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a b s t r a c t 

Most existing approaches address multi-view subspace clustering problem by constructing the affinity 

matrix on each view separately and afterwards propose how to extend spectral clustering algorithm to 

handle multi-view data. This paper presents an approach to multi-view subspace clustering that learns a 

joint subspace representation by constructing affinity matrix shared among all views. Relying on the im- 

portance of both low-rank and sparsity constraints in the construction of the affinity matrix, we introduce 

the objective that balances between the agreement across different views, while at the same time encour- 

ages sparsity and low-rankness of the solution. Related low-rank and sparsity constrained optimization 

problem is for each view solved using the alternating direction method of multipliers. Furthermore, we 

extend our approach to cluster data drawn from nonlinear subspaces by solving the corresponding prob- 

lem in a reproducing kernel Hilbert space. The proposed algorithm outperforms state-of-the-art multi- 

view subspace clustering algorithms on one synthetic and four real-world datasets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

In many real-world machine learning problems the same data 

is comprised of several different representations or views. For ex- 

ample, same documents may be available in multiple languages 

[1] or different descriptors can be constructed from the same im- 

ages [2] . Although each of these individual views may be sufficient 

to perform a learning task, integrating complementary information 

from different views can reduce the complexity of a given task [3] . 

Multi-view clustering seeks to partition data points based on mul- 

tiple representations by assuming that the same cluster structure 

is shared across views. By combining information from different 

views, multi-view clustering algorithms attempt to achieve more 

accurate cluster assignments than one can get by simply concate- 

nating features from different views. 

In practice, high-dimensional data often reside in a low- 

dimensional subspace. When all data points lie in a single sub- 

space, the problem can be set as finding a basis of a subspace 

and a low-dimensional representation of data points. Depending 

on the constraints imposed on the low-dimensional representa- 

tion, this problem can be solved using e.g. Principal Component 

Analysis (PCA) [4] , Independent Component Analysis (ICA) [5] or 

Non-negative Matrix Factorization (NMF) [6–8] . On the other hand, 

data points can be drawn from different sources and lie in a union 
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of subspaces. By assigning each subspace to one cluster, one can 

solve the problem by applying standard clustering algorithms, such 

as k-means [9] . However, these algorithms are based on the as- 

sumption that data points are distributed around centroid and of- 

ten do not perform well in the cases when data points in a sub- 

space are arbitrarily distributed. For example, two points can have 

a small distance and lie in different subspaces or can be far and 

still lie in the same subspace [10] . Therefore, methods that rely on 

a spatial proximity of data points often fail to provide a satisfactory 

solution. This has motivated the development of subspace cluster- 

ing algorithms [10] . The goal of subspace clustering is to identify 

the low-dimensional subspaces and find the cluster membership of 

data points. Spectral based methods [11–13] present one approach 

to subspace clustering problem. They have gained a lot of atten- 

tion in the recent years due to the competitive results they achieve 

on arbitrarily shaped clusters and their well defined mathematical 

principles. These methods are based on the spectral graph theory 

and represent data points as nodes in a weighted graph. The clus- 

tering problem is then solved as a relaxation of the min-cut prob- 

lem on a graph [14] . 

One of the main challenges in spectral based methods is the 

construction of the affinity matrix whose elements define the sim- 

ilarity between data points. Sparse subspace clustering [15] and 

low-rank subspace clustering [16–19] are among most effective 

methods that solve this problem. These methods rely on the self- 

expressiveness property of the data by representing each data 

point as a linear combination of other data points. Low-Rank Rep- 

resentation (LRR) [16,17] imposes low-rank constraint on the data 
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representation matrix and captures global structure of the data. 

Low-rank implies that data matrix is represented by a sum of 

small number of outer products of left and right singular vec- 

tors weighted by corresponding singular values. Under assumption 

that subspaces are independent and data sampling is sufficient, 

LRR guarantees exact clustering. However, for many real-world 

datasets this assumption is overly restrictive and the assumption 

that data is drawn from disjoint subspaces would be more ap- 

propriate [20,21] . On the other hand, Sparse Subspace Clustering 

(SSC) [15] represents each data point as a sparse linear combina- 

tion of other points and captures local structure of the data. Learn- 

ing representation matrix in SSC can be interpreted as sparse cod- 

ing [22–27] . However, compared to sparse coding where dictionary 

is learned such that the representation is sparse [28,29] , SSC is 

based on self-representation property i.e. data matrix stands for a 

dictionary. SSC also succeeds when data is drawn from indepen- 

dent subspaces and the conditions have been established for clus- 

tering data drawn from disjoint subspaces [30] . However, theoreti- 

cal analysis in [31] shows that it is possible that SSC over-segments 

subspaces when the dimensionality of data points is higher than 

three. Experimental results in [32] show that LRR misclassifies dif- 

ferent data points than SSC. Therefore, in order to capture global 

and the local structure of the data, it is necessary to combine low- 

rank and sparsity constraints [32,33] . 

Multi-view subspace clustering can be considered as a part of 

multi-view or multi-modal learning. Multi-view learning method 

in [34] learns view generation matrices and representation ma- 

trix, relying on the assumption that data from all the views share 

the same representation matrix. The multi-view method in [35] is 

based on the canonical correlation analysis in extraction of two- 

view filter-bank-based features for image classification task. Simi- 

larly, in [36] the authors rely on tensor-based canonical correlation 

analysis to perform multi-view dimensionality reduction. This ap- 

proach can be used as a preprocessing step in multi-view learning 

in case of high-dimensional data. In [37] low-rank representation 

matrix is learned on each view separately and learned represen- 

tation matrices are concatenated to a matrix from which a uni- 

fied graph affinity matrix is obtained. The method in [38] relies 

on learning a linear projection matrix for each view separately. 

High-order distance-based multi-view stochastic learning is pro- 

posed in [39] , to efficiently explore the complementary character- 

istics of multi-view features for image classification. The method in 

[40] is application oriented towards image reranking and assumes 

that multi-view features are contained in hypergraph Laplacians 

that define different modalities. In [41] authors propose multi-view 

matrix completion algorithm for handling multi-view features in 

semi-supervised multi-label image classification. 

Previous multi-view subspace clustering works [42–45] address 

the problem by constructing affinity matrix on each view sepa- 

rately and then extend algorithm to handle multi-view data. How- 

ever, since input data may often be corrupted by noise, this ap- 

proach can lead to the propagation of noise in the affinity matri- 

ces and degrade clustering performance. Different from the exist- 

ing approaches, we propose multi-view spectral clustering frame- 

work that jointly learns a subspace representation by construct- 

ing single affinity matrix shared by multi-view data, while at the 

same time encourages low-rank and sparsity of the representa- 

tion. We propose Multi-view Low-rank Sparse Subspace Clustering 

(MLRSSC) algorithms that enforce agreement: (i) between affinity 

matrices of the pairs of views; (ii) between affinity matrices to- 

wards a common centroid. Opposed to [35,40,46] , the proposed ap- 

proach can deal with highly heterogeneous multi-view data com- 

ing from different modalities. We present optimization procedure 

to solve the convex dual optimization problems using Alternat- 

ing Direction Method of Multipliers (ADMM) [47] . Furthermore, 

we propose the kernel extension of our algorithms by solving the 

Table 1 

Notations and abbreviations. 

Notation Definition 

N Number of data points 

k Number of clusters 

v View index 

n v Number of views 

D ( v ) Dimension of data points in a view v 

X (v ) ∈ IR D (v ) ×N Data matrix in a view v 

C ( v ) ∈ IR N × N Representation matrix in a view v 

C ∗ ∈ IR N × N Centroid representation matrix 

W ∈ IR N × N Affinity matrix 

X = U�V T Singular value decomposition (SVD) of X 

�( X ( v ) ) Data points in a view v mapped into high-dimensional 

feature space 

K ( v ) ∈ IR N × N Gram matrix in a view v 

problem in a Reproducing Kernel Hilbert Space (RKHS). Experimen- 

tal results show that MLRSSC algorithm outperforms state-of-the- 

art multi-view subspace clustering algorithms on several bench- 

mark datasets. Additionally, we evaluate performance on a novel 

real-world heterogeneous multi-view dataset from biological do- 

main. 

The remainder of the paper is organized as follows. 

Section 2 gives a brief overview of the low-rank and sparse 

subspace clustering methods. Section 3 introduces two novel 

multi-view subspace clustering algorithms. In Section 4 we present 

the kernelized version of the proposed algorithms by formulating 

subspace clustering problem in RKHS. The performance of the new 

algorithms is demonstrated in Section 5 . Section 6 concludes the 

paper. 

2. Background and related work 

In this section, we give a brief introduction to Sparse Subspace 

Clustering (SSC) [15] , Low-Rank Representation (LRR) [16,17] and 

Low-rank Sparse Subspace Clustering (LRSSC) [32] . 

2.1. Main notations 

Throughout this paper, matrices are represented with bold cap- 

ital symbols and vectors with bold lower-case symbols. ‖ · ‖ F de- 

notes the Frobenius norm of a matrix. The � 1 norm, denoted by 

‖ · ‖ 1 , is the sum of absolute values of matrix elements; infinity 

norm ‖ · ‖ ∞ 

is the maximum absolute element value; and the nu- 

clear norm ‖ · ‖ ∗ is the sum of singular values of a matrix. Trace 

operator of a matrix is denoted by tr ( · ) and diag ( · ) is the vector 

of diagonal elements of a matrix. 0 denotes null vector. Table 1 

summarizes some notations used throughout the paper. 

2.2. Related work 

Consider the set of N data points X = 

{
x i ∈ IR 

D 
}N 

i =1 
that lie in 

a union of k > 1 linear subspaces of unknown dimensions. Given 

the set of data points X , the task of subspace clustering is to clus- 

ter data points according to the subspaces they belong to. The first 

step is the construction of the affinity matrix W ∈ IR 

N × N whose el- 

ements define the similarity between data points. Ideally, the affin- 

ity matrix is a block diagonal matrix such that a nonzero distance 

is assigned to the points from the same subspace. LRR, SSC and 

LRSSC construct the affinity matrix by enforcing low-rank, sparsity 

and low-rank plus sparsity constraints, respectively. 

Low-Rank Representation (LRR) [16,17] seeks to find a low-rank 

representation matrix C ∈ IR 

N × N for input data X . The basic model 

of LRR is the following: 

min 

C 

∥∥C 

∥∥
∗ s.t. X = XC , (1) 
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