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a b s t r a c t 

A number of graph kernel-based methods have been developed with great success in many fields, but 

very little research has been published that is concerned with a graph kernel in Reproducing Kernel 

Hilbert Space (RKHS). In this paper, we firstly start with a derived expression for two forms of informa- 

tion entropy of an undirected graph. They are approximated von Neumann entropy and Shannon entropy, 

and depend on vertex degree statistics. Secondly, we show the basic solution of a generalized differential 

operator. This solution is a specific reproducing kernel called the H 

1 -reproducing kernel in H 

1 -space, and 

then it is proven to satisfy the condition of Mercer kernel. Thirdly, based on the two aforementioned 

forms of information entropy and H 

1 -reproducing kernel, we define two reproducing graph kernels: one 

is approximated von Neumann entropy reproducing graph kernel (AVNERGK), the other is Shannon en- 

tropy reproducing graph kernel (SERGK). And then we prove that they satisfy the condition of Mercer 

kernel. Finally, to obtain better classification results, we further propose a hybrid reproducing graph ker- 

nel (HRGK) based on the two reproducing graph kernels. We use the HRGK as a means to establish the 

similarity between a pair of graphs. Experimental results reveal that our method gives better classifica- 

tion performance on graphs extracted from several graph datasets. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

There has recently been an increasing interest in learning and 

mining data using graph structures. To analyze and understand 

these data, we need some graph similarity measure methods that 

can recognize structural graph datasets. Important graph-related 

similarity measure methods include graph isomorphism testing 

[24] , graph matching [12,18,21] , graph clustering [23] , graph edit 

distance [20,22] , and median graph computation [15] , and so on. 

Graph kernels are powerful tools for structural analysis in machine 

learning. The main advantage of using graph kernels is that they 

provide an implicit embedding of graphs in a high dimensional 

space where structural information is better preserved [3,32] . 

1.1. Related work 

Most of the existing graph kernels are instances of the R- 

convolution kernels proposed by Haussler [34] . Here graph kernels 
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are computed by comparing the similarity of each of the decom- 

positions of the two graphs. Depending on how the graphs are de- 

composed, we obtain different kernels. The R-convolution kernels 

can be categorized into the following classes, namely graph kernels 

based on comparing all pairs of a) walks [14] , b) paths [7] , c) cy- 

cles [2] , and d) subgraph or subtree structures [4,27] . However, the 

R-convolution kernels only count the number of pairwise isomor- 

phic substructures. As a result, the substructures having no cor- 

responding isomorphic substructures are discarded. Moreover, the 

R-convolution kernels are more computationally expensive, and do 

not easily scale up to large sized structures. To overcome the short- 

comings of existing R-convolution kernels, most existing graph ker- 

nels compromise to use substructures of limited sizes, and exam- 

ples include a) the shortest path graph kernel [7] , b) the graphlet 

count graph kernel [27] , c) the fast neighborhood subgraph pair- 

wise distance kernel [9] , and d) the backtrackless kernel [2] . 

In recent years, a number of state-of-the-art graph kernel meth- 

ods have also been reported. For example, to implement the 

computation of the von Neumann entropy more efficiently, Han 

et al. [13] have introduced how the computation can be imple- 

mented quadratically in the number of vertices [36] . To extend 

this work further, Ye et al. [37] have developed how the von 
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Neumann entropy for undirected graphs can be extended to di- 

rected graphs. Furthermore, Bai et al. [3] investigated whether the 

Jensen–Shannon divergence can be used as a means of establish- 

ing a graph kernel, and proposed the Jensen–Shannon graph ker- 

nel. To measure the isomorphisms between hypergraphs straight- 

forwardly, they then built on this initial work and presented a hy- 

pergraph kernel computed using substructure isomorphism tests 

[5] . Later, they [6] used the quantum Jensen–Shannon divergence 

as a means of measuring the information theoretic dissimilarity 

of graphs and thus developed a novel quantum Jensen–Shannon 

graph kernel. Moreover, Xu et al. [32] proposed a mixed Weisfeiler–

Lehman (WL) graph kernel framework based on a family of ef- 

ficient WL graph kernels. It can be competitive with or outper- 

forms the corresponding single WL graph kernel in the experi- 

ments. Based on the latest advancements in language modeling 

and deep learning, Pinar et al. [38] have presented Deep Graph 

Kernels, which is a unified framework to learn latent representa- 

tions of sub-structures for graphs. Zhao et al. [39] have derived a 

graph kernel to quickly and accurately compute the graph similar- 

ity in videos for automatic behavior analysis. Their approach can 

be plugged into any kernel-based classifier. 

There have been many other successful attempts to classify 

or cluster graphs using graph kernels, such as edge kernels [30] , 

Weisfeiler–Lehman graph kernels [26] , fast multi-view segment 

graph kernels [33] , and many others. However, it should firstly be 

noted that most of the graph kernel methods mentioned above 

tend to be burdensome and have a high time complexity. The run- 

time may be several days for graphs of large sizes (e.g. a graph 

having more than one thousand vertices). Secondly, some kernels 

may not obtain better experiment results. 

1.2. Contributions and paper organization 

In this paper, we explore how a simplification can be used to 

efficiently compute the graph kernel between graphs. The result- 

ing computations depend on the node degree distribution over the 

graph and reproducing kernel function, and can be simply com- 

puted for both the original graphs. The main contributions of this 

paper are as follows. Firstly, the reproducing kernel function pos- 

sesses many nice properties, such as the odd order vanishing mo- 

ment, symmetry and regularity. We therefore show the basic so- 

lution of a generalized differential operator by the delta function, 

and this solution was proven to be a specific H 

1 -reproducing ker- 

nel. We further prove that the H 

1 -reproducing kernel satisfies the 

condition of Mercer kernel. Secondly, to develop a novel graph ker- 

nel using the divergence measure, based on the approximated von 

Neumann entropy and Shannon entropy measure for each graph 

and H 

1 -reproducing kernel, we define two novel graph kernels 

based on information entropies. They are the approximated von 

Neumann entropy reproducing graph kernel (AVNERGK) and Shan- 

non entropy reproducing graph kernel (SERGK). Thirdly, to take 

into account the structural information which was overlooked in 

the methods discussed previously and improve the classification 

accuracy of reproducing graph kennel methods, we propose a hy- 

brid reproducing graph kernel (HRGK) based on two reproducing 

graph kernels for unattributed graphs. Experiments demonstrate 

that it is consistently comparable or superior to a number of other 

existing state-of-the-art graph kernels in terms of the classifica- 

tion accuracy and runtime. Note that this paper is partly moti- 

vated by defining two novel reproducing graph kernels (AVNERGK 

and SERGK). As a second motivation, we intend to mix the two 

novel reproducing graph kernels to improve the classification per- 

formance of graph kernel methods based on reproducing kernel. 

In future, we shall further discuss multiple graph-kernel learning 

which are based on the graph kernels of different types, possibly 

with better diversity. 

The remainder of this article is organized as follows. 

Section 2 describes fundamentals, including the reproducing kernel, 

conditions of Mercer kernel, node degree distribution, and infor- 

mation entropy for an unattributed graph. In Section 3 we present 

the reproducing graph kernels AVNERGK and SERGK, and the hy- 

brid reproducing graph kernel. Section 4 provides the experimental 

evaluation. Finally, a summary in Section 5 concludes the paper. 

2. Fundamentals 

2.1. Reproducing kernel 

A Hilbert Space is an inner product space that is complete and 

separable with respect to the norm defined by the inner product. 

A Hilbert space of complex-valued functions which possesses a re- 

producing kernel is called a RKHS or a proper Hilbert space [41] . 

Definition 1. A function: K : E × E → C , ( s, t ) �→ K ( s, t ) is a reproduc- 

ing kernel of the Hilbert space H if and only if 

(i) ∀ t ∈ E, K (., t ) ∈ H ; 

(ii) ∀ t ∈ E , ∀ φ ∈ H , 〈 φ, K(., t) 〉 = φ(t) . 

This last condition ( ii ) is called the reproducing property [41] : 

the value of the function φ at the point t is reproduced by the 

inner product of φ with K (., t ). 

2.2. Conditions of Mercer Kernel 

If a function satisfies the condition of Mercer kernel, it is the 

allowable kernel function. For the translation invariant function, 

we can give the condition of translation invariant kernel function 

[40,42] . 

Lemma 1. The translation invariant function k (x, x ′ ) = k (x − x ′ ) is 

an allowable kernel function if and only if the Fourier transform of 

k ( x ) satisfies the condition 

ˆ k (w ) = (2 π) −
d 
2 

∫ 
R 

exp(− j wx ) k (x ) d x ≥ 0 (1) 

Lemma 1 proposes a simple method to build the kernel func- 

tion. 

The kernel function plays a crucial role in understanding Sup- 

port Vector Machines (SVMs) and will be an important theme 

throughout this paper. We shall examine its properties, related al- 

gorithms and applications in general pattern analysis. 

2.3. Node degree distribution 

In order to understand the principle of AVNERGK, we need to 

make clear the concepts below. Here, we use node degree distribu- 

tion to calculate the approximated von Neumann entropy. To begin, 

we denote the graph as G = (V, E) where V is the set of nodes and 

E ⊆V × V is the set of edges. For the adjacency matrix A of graph G , 

it has elements 

A (u, v ) = 

{
1 i f (u, v ) ∈ E, 

0 otherwise. 
(2) 

The degree matrix of graph G is a diagonal matrix D . Its diago- 

nal elements are the node degrees: D (u, u ) = d u = 

∑ 

v ∈ V A (u, v ) . By 

the adjacency matrix and the degree matrix, we have the Laplacian 

matrix L = D − A, i.e. the degree matrix minus the adjacency ma- 

trix. Further, we obtain the elements of the Laplacian matrix are 

L (u, v ) = 

{ 

d v i f u = v , 
−1 i f (u, v ) ∈ E, 

0 otherwise 
(3) 
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