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a b s t r a c t 

Squared planar markers are a popular tool for fast, accurate and robust camera localization, but its use is 

frequently limited to a single marker, or at most, to a small set of them for which their relative pose is 

known beforehand. Mapping and localization from a large set of planar markers is yet a scarcely treated 

problem in favour of keypoint-based approaches. However, while keypoint detectors are not robust to 

rapid motion, large changes in viewpoint, or significant changes in appearance, fiducial markers can be 

robustly detected under a wider range of conditions. This paper proposes a novel method to simultane- 

ously solve the problems of mapping and localization from a set of squared planar markers. First, a quiver 

of pairwise relative marker poses is created, from which an initial pose graph is obtained. The pose graph 

may contain small pairwise pose errors, that when propagated, leads to large errors. Thus, we distribute 

the rotational and translational error along the basis cycles of the graph so as to obtain a corrected pose 

graph. Finally, we perform a global pose optimization by minimizing the reprojection errors of the planar 

markers in all observed frames. The experiments conducted show that our method performs better than 

Structure from Motion and visual SLAM techniques. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Camera pose estimation is a common problem in several ap- 

plications such as robot navigation [1,2] or augmented reality [3–

5] . The goal of camera pose estimation is to determine the three- 

dimensional position of a camera w.r.t. a known reference system. 

To solve that problem, a great part of the research focuses on 

using natural landmarks, being Structure from Motion (SfM) and 

Simultaneous Localization and Mapping (SLAM), the two main ap- 

proaches. Both methods rely on keypoints [6–8] , which detect dis- 

tinctive features of the environment. However, keypoint matching 

has a rather limited invariability to scale, rotation and scale, which 

in many cases makes them incapable of identifying a scene under 

different viewpoints. Thus, mapping an environment for tracking 

purposes under unconstrained movements requires a very exhaus- 

tive exploration. Otherwise, localization will fail from locations dif- 

ferent from these employed for mapping. Take as example Fig. 1 , 

where two images of the same scene are shown from different 

viewpoints and the SURF [6] keypoint matcher is applied, showing 
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as coloured lines the detected matches. Only two correct matches 

are obtained in this scene. 

Squared planar markers, however, are designed to be easily de- 

tected from a wider range of locations [4,9–12] . Most frequently, 

squared markers use an external (easily detectable) black border 

and an inner binary code for identification, error detection and 

correction. A single marker provides four correspondence points 

which can be localized with subpixel precision to obtain an accu- 

rate camera pose estimation. The scene in Fig. 1 contains a set of 

planar markers which have been properly detected and identified 

despite the viewpoint changes. However, camera localization from 

a planar marker suffers from the ambiguity problem [13] , which 

makes it impossible to reliably distinguish the true camera location 

in some occasions (see Sections 2.4 and 4.5 for further details). 

Despite their advantages, large-scale mapping and localization 

from planar markers is a problem scarcely studied in the litera- 

ture in favour of keypoint-based approaches. While it is true that 

some environments cannot be modified, in many occasions it is 

possible to place as many markers as desired. In these cases, a 

large-scale and cost-effective localization system can be done us- 

ing planar markers exclusively. Additionally, in many indoor envi- 

ronments, such as labs or corridors, there are frequently large un- 

textured regions from which keypoints can not be detected. If the 

environment must be texturized, then, it would be preferable to do 
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Fig. 1. Example showing the matching capabilities of keypoints versus fiducial markers systems. Coloured lines show the best matches obtained by the SURF keypoint 

detector. Red rectangles show the markers detected along with its identification. Despite large viewpoint changes, fiducial markers are correctly localized and identified. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

it with fiducial markers, since they can be identified from a wider 

range of viewpoints than keypoints. 

This work proposes a solution to the problem of mapping and 

localization from planar markers. The contribution of this work is 

three-fold. First, we propose to tackle the marker mapping problem 

as a variant of the Sparse Bundle Adjustment problem, but consid- 

ering that the four corners of a marker must be optimized jointly. 

As a consequence, our approach reduces the number of variables 

to be optimized and ensures that the true distance between cor- 

ners is enforced during optimization. Second, we propose a graph- 

based method to obtain the initial map of markers dealing with 

the ambiguity problem. To that end, we first create a quiver of 

poses from which an initial pose graph is obtained which is then 

optimized distributing the rotational and translational errors along 

its cycles. Third, we propose a localization method considering all 

visible markers, which is able to cope with the ambiguity problem. 

In order to validate our proposal, it has been evaluated against 

two SfM and two SLAM state-of-the-art methods, and the results 

show that our proposal improves them. 

The rest of this paper is structured as follows. Section 2 ex- 

plains the related works, while Section 3 presents some initial 

concepts and definitions. Later, Section 4 explains our proposal 

and Section 5 the experiments conducted. Finally, Section 6 draws 

some conclusions. 

2. Related works 

This section provides an overview of the main research related 

to ours. 

2.1. Structure from motion 

Structure from Motion techniques take as input a collection of 

images of the scene to be reconstructed, from which keypoints are 

detected so as to create a connection graph. From the set of im- 

age matches, the relative position of the cameras is obtained by ei- 

ther an incremental or a global approach. Incremental approaches 

[14,15] select an initial good two-view reconstruction, and images 

are repeatedly added along with their triangulated matched key- 

points. At each iteration, bundle adjustment is applied to adjust 

both structure and motion. Global approaches [16–18] , however, 

create a pose graph by computing pairwise view poses. In a first 

step, they compute the global rotation of the views, and in a sec- 

ond step the camera translations. All cycles of the graph impose 

multi-view constrains that when enforced reduce the risk of drift- 

ing occurring in incremental methods. Both incremental and global 

approaches end with a bundle adjustment process to jointly opti- 

mize the motion and structure components. 

In order to compute the relative pose between two views it is 

necessary to assume that the scene is locally planar [19] , so that 

the homography can be computed [20] , or compute the essential 

matrix, which can model both planar and general scenes using the 

five-point algorithm [21] . However, in most cases, a relatively large 

number of matches between image pairs is required in order to 

obtain reliable solutions. 

At the core of the SfM techniques there is the need to solve the 

so called “motion averaging” problem. It refers to a set of meth- 

ods employed to estimate the poses of a camera observing a com- 

mon scene from multiple viewpoints. In general, the problem is 

decomposed into “rotation averaging” and “translation averaging”, 

since they can be dealt independently. Chatterjee and Govindu 

[22] proposed a method with the main advantage of not requiring 

to explicitly compute the cycles in which outlier edges are han- 

dled by an iterative non linear refinement. Zach et al. [23] pro- 

posed a method to identify outlier edges in a relative rotation 

graph, which in the case of SfM is a hard problem. Özyesil and 

Singer [24] proposed a method for robust “translation averaging”. 

Their main contribution is a method robust to outliers in point 

correspondences between image pairs, and a convex optimization 

method to maintain robustness to outlier directions. Govindu also 

proposed [25] methods to linearly solve for consistent global mo- 

tion models using a highly redundant set of constraints by using all 

possible algebraic constraints. Martinec and Pajdla [26] proposed a 

method to estimate both rotation and translations using a standard 

technique based on Second Order Cone Programming. Robustness 

is achieved by using only a subset of points according to a crite- 

rion that diminishes the risk of choosing a mismatch. Tron et al. 

[27,28] proposed distributed algorithms for estimating the average 

pose of an object viewed by a localized network of cameras. They 

also show that generalizations of Euclidean consensus algorithms 

fail to converge to corrects solutions. Sharp et al. [29] , proposed 

methods to solve both the rotation and motion averaging prob- 

lem. In their approach, outliers are not considered and only the 

problem of motion averaging is solved, by separately distributing 

rotation and translation errors along the basis cycles of a graph. 

This method adapts well to our problem in which no outliers are 

present since all established correspondences are known to be cor- 

rect. The main advantage of their approach is that since there is 

not outliers to be considered, the motion averaging problem is 

simplified allowing a fast implementation. For a deeper introduc- 

tion to this problem, the interested reader is referred to Hartley’s 

work [30] . 
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