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a b s t r a c t

The number of methods available for classification of multi-label data has increased rapidly over recent
years, yet relatively few links have been made with the related task of classification of sequential data. If
labels indices are considered as time indices, the problems can often be seen as equivalent. In this paper
we detect and elaborate on connections between multi-label methods and Markovian models, and study
the suitability of multi-label methods for prediction in sequential data. From this study we draw upon
the most suitable techniques from the area and develop two novel competitive approaches which can be
applied to either kind of data. We carry out an empirical evaluation investigating performance on real-
world sequential-prediction tasks: electricity demand, and route prediction. As well as showing that
several popular multi-label algorithms are in fact easily applicable to sequencing tasks, our novel ap-
proaches, which benefit from a unified view of these areas, prove very competitive against established
methods.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-label classification is the supervised learning problem
where an instance is associated with multiple class variables (i.e.,
labels), rather than with a single class, as in traditional classifica-
tion problems. See [1] for a review. The typical argument is that,
since these labels are often strongly correlated, modelling the
dependencies between them allows methods to obtain higher
performance than if labels were modelled independently – at the
expense of an increased computational cost.

The case of binary labels is most common, where a positive
class value denotes the relevance of the label (and the negative or
null class denotes irrelevance). Typical examples of binary multi-
label classification involve categorizing text documents and ima-
ges, which can be assigned any subset of a particular label set. For
example, an image can be associated with both labels beach and
sunset. This is usually represented in vector form, such that, gi-
ven a set of labels1 { }= beach urban foliage sunset mountains fields, , , , , ,
then an associated label vector is

= [ ] = [ ]y y y y y y y 1 0 0 1 0 0, , , , , , , , , ,1 2 3 4 5 6

which indicates that the first and fourth labels (beach and sun-

set) are relevant. The image itself can be represented by feature
vector = [ … ]x x x, , D1 , and thus the pair x y, represents an image
and its associated labels. The multi-label classification paradigm
has been successfully considered also in many other domains, such
as text, video, audio, and bioinformatics – see [1] and references
therein for further examples.

Although binary labels (representing relevance and irrelevance)
are enough to represent a huge number of practical problems, the
generalization where each label can take multiple values – var-
iously called multi-target, multi-output, or multi-dimensional
classification – has also been investigated in the literature (see [3–
5]). In this case each t-th ‘label’ ( = …t T1, , ) can take on up to L
values such as a rating ∈ { }y 1, 2, 3, 4, 5t (where L¼5), hour of day

∈ { … }y 0, , 23t (where L¼24) and so on, rather than the simple
relevance/irrelevance case (L¼2). In practice many multi-label
algorithms can be applied directly to the general multi-output
case, and are always applicable indirectly, following from the fact
that any binary number can be represented as any decimal num-
ber and vice versa. Fig. 1 shows the relationship between these
paradigms. Throughout this work, we will continue to use the
term multi-label classification for the general case..

Sequential data applications deal with a changing state over
time, for example of an object or scenario at a particular time
index. Approaches to modelling in relevant domains are frequently
based on some variety of Markov model, of which detailed over-
views are given by [6] and [7].
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For example, a traveller's movements among waypoints in a
city can be modelled as a series of references to these points,
where we can consider yt as indicating the waypoint at time t,
then an example of a short path among four points under typical
notation2

= =y y y y y, , , 3, 8, 17, 51:4 1 2 3 4

where the numbers are unique to each node. The difference in real
time between each t and +t 1 depends on the application (it could
be seconds, or minutes, for example). The observation (known
often emission) available at time point t is represented as vector xt.

These two problems (the one of multi-label and sequential
prediction), have until now mostly received attention as different
areas of research. However, they can often be seen not just as
related problems, but in fact as identical problems, where the
terms ‘time index’, ‘state’, ‘observation’, and ‘path’ can be inter-
changed with terms like ‘label index’, ‘label’, ‘input’, and ‘label
vector’, respectively.

We were motivated to take a unified view of these two tasks –
multi-label classification and sequential prediction – in a frame-
work that allows the natural application of one to the other. This
allows us to apply and further develop suitable techniques from
multi-label classification to the domain of sequential prediction, in
the form of novel methods that overcoming the disadvantages of
hidden Markov models and related approaches by allowing the
simultaneous prediction of multiple values across time.

In the first contribution of this work, we compare and contrast
typical approaches for modelling of multi-label and sequential
data, then draw strong connections between these areas (Section
2). We show that many (if not, most) methods are directly ap-
plicable from one problem to the other, and that all methods are
applicable in some way, usually only with small modifications to
the way the data is preprocessed. We analyze and discuss the re-
lative advantages and disadvantages of each method. Furthering
this, we provide a unified view (in Section 3) describing a common
framework for multi-label and sequential-data algorithms. We
look particularly at the applicability of multi-label methods for
obtaining competitive performance and necessary scalability
characteristics for sequential prediction. In a novel manner we
adapt a Markov-based methodology for multi-label data to create
a new method (Viterbi Classifier Chains, Section 4), and discuss its
suitability in both domains. This leads us to formulate a further
novel approach (in Section 5): Sequential Increasingly-sized
Chained Labelsets (SICL), which casts a combination of chain-
based and set-based approaches to the sequential problem by
taking into account the decay of confidence for points relatively
further in the future. In Section 6 we compare against a number of
competitive multi-label and sequential methods in empirical
evaluations on some real-world sequential-data problems. We find
that our novel schemes are competitive and scalable. Finally, in
Section 7 we discuss the results, summarize our contributions,
draw conclusions and mention promising future work in both
areas.

2. Connections between multi-label and sequential classifica-
tion problems

In this work we study the supervised classification task, where
a series of inputs is mapped to a series of outputs by a model
trained on similar labelled examples (i.e., a training set is avail-
able). In the sequential task, classification of the future is often
specifically referred to as prediction (as opposed to the estimation
of a current state). In the multi-label context, there is no explicit
time context, and therefore the term prediction/estimation are
used interchangeably for all outputs.

It should be noted that Markov methods are also used fre-
quently in an unsupervised fashion, which is analogous to clus-
tering in non-sequential data. Although this is also a major task, it
is not one that we are directly concerned with in this work.

Also, if the state variable is continuous (i.e., ∈y Rt ), a natural
extension of Markov models are the Kalman and particle filters,
which is analogous to multi-output regression. We do not speci-
fically address this case, although many of the connections we look
at transfer also easily to the scenario of real-valued outputs.

In Table 1 we outline the parallels between the terminology
used in research dealing with the areas of sequential and multi-
label data. To the best of our knowledge connection has not been
documented to such as extent in the literature. We will start with a
discussion on models (Section 2.1) for sequential data, and refer
back to these models thereafter as we draw connections from
multi-label data (Section 2.2).

2.1. Models for sequential data

Applications of classification in sequential data abound in the
real world and this is echoed in a wealth of scientific literature.
Applications include speech, handwriting, and gesture recognition,
part-of-speech tagging, daily activity and medical monitoring,
fraud detection [8], and traveller modes and movements in an
urban setting [9–11].

A prominent methodology is that of Markov models, both for
estimation and prediction, where the sequence of states generates
a corresponding sequence of observations. The classification task
can be carried out retrospectively or in real time.

Recal the notation outlined in Table 1 where each state
∈ { … }y L1, ,t at time t is a discrete variable taking one of L values.

In a hidden Markov model (HMM), each state yt at time t is seen as
generating an observation/emission xt, in addition to the following
state +yt 1, such that

Fig. 1. Different classification paradigms: T is the number of class labels (or target
variables), and L is the number of values that each label variable can take.

Table 1
Notation, and comparison of typical terms in the literature dealing with sequential
and multi-label data. Note that indexing with t is more typical of the former,
whereas j, k, or ℓ are used to index labels. As the target application of this work
involves sequential data, we use the t index henceforth throughout. On the other
hand, we use yt to indicate an output label, and xt the inputs, as per multi-label
convention and in contrast to many uses in sequential-algorithms, particularly
Markov models.

symbol sequential data multi-label data

= …t T1, , time index label index
L number of states number of values per label
T sequence length total number of labels

∈ { … }y L1, ,t state at time t value of t-th label

≡x xT1: full emissions input feature vector
= [ … ]x x x, ,t D1 emission at time t input subset

= …y y y, ,T T1: 1 sequence/path label vector (y)

≡ = [ … ]y y y, , T1

{ }( )
=y i

i
N

1
N sequences label vectors

{ }( ) ( )
=x y,i i

i
N

1
training data training data / dataset2 Although, in typical Markov-model notation, y is often used to denote the

observation or emission, rather than the state.
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