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a b s t r a c t 

Feature selection concerns the task of finding the subset of features that are most relevant to some spe- 

cific problem in the context of machine learning. By selecting proper features, one can reduce the com- 

putational complexity of the learned model, and to possibly enhance its effectiveness by reducing the 

well-known overfitting. During the last years, the problem of feature selection has been modeled as an 

optimization task, where the idea is to find the subset of features that maximize some fitness function, 

which can be a given classifier’s accuracy or even some measure concerning the samples’ separability in 

the feature space, for instance. In this paper, we introduced Geometric Semantic Genetic Programming 

(GSGP) in the context of feature selection, and we experimentally showed it can work properly with both 

conic and non-conic fitness landscapes. We observed that there is no need to restrict the feature selection 

modeling into GSGP constraints, which can be quite useful to adopt the semantic operators to a broader 

range of applications. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Machine learning techniques have been the forerunner of sev- 

eral advances in Computer Science and application-driven areas, 

which range from medical image understanding to video summa- 

rization, just to name a few. Deep learning techniques are now 

in the spotlight, since they have obtained outstanding results in a 

number of applications, with performance quite near to the human 

level. 

However, even the most accurate approaches may have their 

performance (i.e., effectiveness and/or efficiency) degraded due to 

the high dimensionality of the datasets. In this context, feature se- 

lection arises to mitigate that problem by selecting the subset of 

the most representative features, which is somehow modeled as 

an optimization problem. A common approach is to select the sub- 

set of features that maximize some classifier’s recognition rate, the 

so-called wrapper approaches . On the other hand, one can use any 

kind of fitness value that measures the quality of the feature space, 

such as its separability or compactness. 

A number of works modeled the problem of feature selec- 

tion as a nature-inspired-based optimization task. Nakamura et al. 

[21] and Rodrigues et al. [30] proposed the Binary Bat Algorithm 
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for feature selection purposes, being the optimization problem 

guided by the accuracy of the Optimum-Path Forest (OPF) [24–

26] classifier over a validating set. [11] were one of the first to 

introduce the term swarm feature selection , where the well-known 

Particle Swarm Optimization (PSO) was used to select features in 

the context of hyperspectral remote sensing image classification. 

Non-wrapper approaches can be referred to as well, such as the 

work by [22] , which employed evolutionary optimization for fea- 

ture construction in benchmarking datasets and symbolic learning. 

A Binary Cuckoo Search approach was proposed in context of 

theft detection in power distribution systems [29] , and the Binary 

Flower Pollination Algorithm was also presented for feature se- 

lection purposes and compared against PSO, Harmony Search and 

Firefly Algorithm [31] . Evolutionary-oriented optimization tech- 

niques have been also used to find out the most representative 

features. [38] , for instance, used Genetic Algorithms together with 

Neural Networks for feature selection purposes. Genetic Program- 

ming (GP) [17] was also employed for the very same purpose, 

either representing classifiers instanced with different subsets of 

features [19,28] or using a two-stage approach [7] . Even further, 

Grammatical Evolution was also employed under the context of 

feature construction and selection [12] . 

Surprisingly, there are a few works that attempted at using GP 

for feature selection purposes only. Since the idea of using Genetic 

Programming to select features is plausible and quite simple, we 

propose here to use only logical operators at the function nodes, 
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being the terminal nodes encoded by binary vectors that represent 

randomly chosen features (‘1’ = feature selected, and ‘0’ the oppo- 

site situation.) This approach concerns our baseline for comparison 

purposes, being the OPF classifier used to guide the optimization 

process. As far as we are concerned, that is the first time such sort 

of approach is used for feature selection purposes. 

However, the main contribution of this work is related to the 

Geometric Semantic Genetic Programming (GSGP) technique [20] , 

which encodes the semantic (meaning) of individual trees when 

performing mutation and crossover operations. GSGP has been em- 

ployed to a number of problems very recently, such as electoral 

redistricting problem [6] and real-life applications [35] . One strong 

point of geometric semantic operators concerns their ability in in- 

ducing unimodal fitness landscapes on some problems where one 

knows the matching between the input and the output data. How- 

ever, as far as we are concerned, GSGP has never been considered 

in the context of feature selection up to date, which turns out to be 

the main contribution of this paper. Additionally, we showed GSGP 

can also work well in situations where the assumption of unimodal 

fitness landscapes is not guaranteed in the context of feature selec- 

tion. 

Therefore, the main contributions of this paper are twofold: 

• to introduce GSGP in the context of feature selection; and 

• to show feature selection can be addressed by GSGP in non- 

unimodal fitness landscapes. 

This paper is an extension of the work by [32] , which firstly 

introduced GSGP for feature selection purposes. 

The remainder of the paper is organized as follows. 

Sections 2 and 3 present the theoretical background related 

to GSGP and the proposed approach for feature selection 

purposes, respectively. Section 4 describes the methodol- 

ogy, and Section 5 discusses the experimental results. Finally, 

Section 6 states conclusions and future works. 

2. Geometric semantic genetic programming 

Genetic Programming [17] is an evolutionary-based optimiza- 

tion algorithm that models each solution as an individual, which 

is usually represented as a tree composed of function and terminal 

nodes. The function nodes encode the arithmetic operators used 

over the terminal nodes in order to evaluate the trees, and the ter- 

minal nodes represent constant values. At each iteration, specific 

operations over the current population are performed to design the 

next generation of individuals, being the most used ones: (i) mu- 

tation, (ii) crossover and (iii) reproduction. Mutation and crossover 

aim at allowing a greater variability to the population of individ- 

uals, while reproduction tries to maintain the best ones to the 

next generation. In short, mutation operations change each indi- 

vidual without considering others, i.e., given a mutation point, we 

can simply generate a new random subtree at that point, while 

crossover switch branches between two distinct trees. 

Geometric Semantic Genetic Programming introduces the con- 

cept of semantic operators [20] , which can encode the meaning 

of the programs (individual trees/solutions) during the convergence 

process. On the other hand, standard GP ignore the knowledge 

about a problem and manipulate the solutions only considering 

their syntax. In order to cope with this problem, [20] proposed 

four geometric semantic operators, being two of them related to 

binary-constrained optimization problems, which is the case of 

feature selection. Roughly speaking, each possible solution is en- 

coded by a binary array that basically turns on (i.e., the decision 

variable takes the value ‘1’) or off (i.e., the decision variable takes 

the value ‘0’) a given bit that corresponds to the presence or ab- 

sence of some specific feature. 

Fig. 1. Offspring generated by means of the semantic crossover defined in Eq. (1) . 

Fig. 2. Tree-like representation concerning the following expressions: (a) T AND M , 

and (b) T OR M . 

Let T 1 and T 2 be two logic functions 1 , such that T 1 , T 2 : {0, 

1} n → {0, 1}. A geometric semantic crossover operator over T 1 and 

T 2 outputs the following offspring boolean function: 

T 3 = (T 1 OR T R ) AND ( T R OR T 2 ) , (1) 

where T R is a randomly generated boolean function. Fig. 1 depicts 

a graphical representation of the offspring function T 3 . The boolean 

function T R can be any tree generated at random that contains only 

logic function nodes. 

Notice that Eq. (1) is a geometric semantic operator when the 

fitness function used to guide the optimization problem is based 

on the Hamming distance [20] . A similar definition is also applied 

to the geometric semantic mutation operator, which states that a 

given parent function T : {0, 1} n → {0, 1} is a semantic mutation 

operator when the fitness function is based on the Hamming dis- 

tance [20] . 

The geometric semantic mutation operator outputs the follow- 

ing boolean offspring T M 

: 

T M 

= 

{
T AND M with probability 0.5 

T OR M otherwise, 
(2) 

where M stands for a random minterm of all input variables. Fig. 2 

depicts the above formulation in a tree-like structure. 

1 By logic function we mean an “OR” or “AND” operator, for instance. 
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