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a b s t r a c t 

Ambiguity in a dataset, characterized by data points having multiple target labels, may occur in many 

supervised learning applications. Such ambiguity originates naturally or from misinterpretation, faulty 

encoding, and/or incompleteness of data. However, most applications demand that a data point be as- 

signed a single label. In such cases, the supervised learner must resolve the ambiguity. To effectively 

perform ambiguity resolution, we propose a new variant of the popular Multi-Layer Perceptron model, 

called the Generalized Mean Multi-Layer Perceptron (GMMLP). In GMMLP, a novel differentiable error 

function guides the back-propagation algorithm towards the minimum distant target for each data point. 

We evaluate the performance of the proposed algorithm against three alternative ambiguity resolvers on 

20 new artificial datasets containing ambiguous data points. To further test for scalability and comparison 

with multi-label classifiers, 18 real datasets are also used to evaluate the new approach. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Given a training dataset S = { (x i , c i ) | x i ∈ P ⊂ R 

d ; c i ∈ C = 

{ 1 , 2 , · · · , C}} , consisting of data points x i in the training set 

P and their corresponding labels c i , the traditional supervised 

learning problem is to identify the mapping f : R 

d → C so that 

f (x i ) = c i ∀ x i ∈ P . Then, the label for a new data point y ∈ Q ⊂ R 

d 

( Q being the test set) can be predicted to be f ( y ). However, many 

practical applications are characterised by ambiguous training 

data points, i.e., data points with multiple corresponding labels. 

Formally, the notion of ambiguity in context to supervised learning 

can be defined as follows. 

Definition 1. For a supervised learning problem with dataset S = 

{ (x i , C i ) | x i ∈ P ⊂ R 

d ;C i ⊆ C} , a data point x i ∈ P is said to be am- 

biguous if | C i | ≥ 2. 

Ambiguity in a supervised learning problem may stem from 

a variety of reasons such as label noise, lack of sufficient in- 

formation to be able to distinguish between classes or concepts, 

faulty label encoding scheme resulting in distinct labels being as- 

signed to a single concept, information overlap between classes 

etc. Such datasets can be subjected to two distinct forms of su- 
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pervised learning, viz. ambiguity resolution and multi-label learning 

[20] , which are defined as follows. 

Definition 2. For a dataset S containing ambiguous data points, the 

problem of ambiguity resolution is to identify a suitable mapping 

f 1 : R 

d → C such that f 1 ( x i ) ∈ C i ∀ x i ∈ P . 

Definition 3. The problem of multi-label learning, on the other 

hand, is to identify a suitable mapping f 2 : R 

d → P(C) \ { �} ( P(C) 

being the power set of C) so that f 2 ( x i ) ≡ C i ∀ x i ∈ P . 

Therefore, ambiguity resolution also differs from multi-label 

learning, in the treatment of a test point y , in that f 1 (y ) ∈ C is a 

single predicted label while f 2 (y ) ⊆ C is a set of possible labels. 

Multi-label learning predicts potentially multiple labels for a given 

data point. Consequently, it is not suitable for applications where a 

single label (out of multiple ambiguous labels) should be selected 

for each data point. Let us look at a few scenarios where the need 

for such ambiguity resolution arises. 

1. If the training dataset is multi-labeled but the user insists that 

a single label be assigned to a query point [3] . A befitting ex- 

ample can be, the task of identifying individual personalities 

using a facial recognition classifier which is trained on multi- 

labeled news-feed images, where no correspondence between 

the labels and the personalities in an image is specified [4] . 

2. If multiple experts are used to label a dataset, their personal 

opinions, feelings, knowledge, and biases can cause some of the 

data points to be assigned with multiple ambiguous labels, only 

one of which is the true label. For example, detecting emotions 

http://dx.doi.org/10.1016/j.patrec.2017.04.019 

0167-8655/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.patrec.2017.04.019
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2017.04.019&domain=pdf
mailto:shounak.jaduniv@gmail.com
mailto:sankha_r@isical.ac.in
mailto:swagatam.das@isical.ac.in
mailto:swagatamdas19@yahoo.co.in
http://dx.doi.org/10.1016/j.patrec.2017.04.019


S. Datta et al. / Pattern Recognition Letters 94 (2017) 22–29 23 

from speech (EMA dataset [17] ), recognising faces in a picture 

(LOST dataset [5] ),predicting medical condition from clinical re- 

ports [31] , etc. Such type of problems have been previously 

dealt with in [32,39] , etc. 

3. A similar but more challenging problem arises when the labels 

are crowd-sourced, resulting in almost every data point being 

labeled with a potentially large set of ambiguous labels, only 

one of which is correct. Detailed discussions on this problem 

can be found in [13,23] , etc. 

4. There can also be cases where the labels of a dataset becomes 

noisy or corrupted due to faulty transmission, storage, etc. A 

description and simulation strategy of such problems can be 

found in the literature on partial label learning [35,36] . 

Hence, ambiguity resolution which is the general problem en- 

compassing all the above-mentioned scenarios can be significantly 

important and useful in many real-life applications. 

Surprisingly, the present literature on learning with ambiguous 

data points abounds with paradigms of multi-label learning [20] , 

while the equally (if not more) important problem of ambiguity 

resolution has received little attention. Some learners designed for 

handling multi-label problems are [22,28,34,37,38] etc. Another ap- 

proach to deal with ambiguity is preference learning (more specifi- 

cally label ranking ), where each data point has a preference ranking 

corresponding to each label [14,33] . While it may help in resolving 

ambiguity, by assigning an ambiguous point with the label hav- 

ing maximum preferability (if there exists such an unique label), it 

usually requires prior preference information [9] which is often un- 

available or costly. The major work in ambiguity resolution is that 

of Bullinaria [3] , in which a common Multi-Layer Perceptron (MLP) 

is proposed to handle ambiguities in the (g + 1) th epoch by draw- 

ing each ambiguous data point x i towards the label c 
(g) 
i 

∈ C i which 

generates minimum error for x i in the g th epoch. The assump- 

tion behind this approach is that the ambiguity gets resolved auto- 

matically as the network gets trained on the non-ambiguous data 

points. However, the use of discrete minimum function prevented 

the application of the back-propagation algorithm directly to the 

non-differentiable error function. Moreover, such an approach also 

completely ignores the affinity that a data point may have towards 

other labels. The reliance on a large number of hidden nodes, as 

demonstrated by experiments in [3] , is possibly a side-effect of the 

unusual learning method adopted. 

In this article, we propose an elegant improvement over Bul- 

linaria’s early milestone by using the concept of the generalized 

mean [11] . 

Definition 4. The generalized mean μρ of a set of real numbers 

A ⊂ R is defined as 

μρ(A ) = 

( 

1 

| A | 
∑ 

a ∈ A 
a ρ

) 

1 
ρ . (1) 

It is well known that the generalized mean of a set of values 

tends towards the minimum value, for a sufficiently small choice 

of the exponent, i.e. μρ ( A ) → min ( A ) as ρ → −∞ . The general- 

ized mean function being both continuous as well as differentiable, 

unlike the minimum function, can be directly subjected to back- 

propagation based learning. Furthermore, the affinity to the mini- 

mum value can be controlled by varying the exponent ρ . Because 

of these desirable characteristics, we are motivated to utilize gen- 

eralized mean for ambiguity resolution using MLPs. 

The major contributions of the current study are summarized 

below: 

1. We put forth a novel error function for back-propagation based 

learning of MLPs, which is able to handle non-ambiguous and 

ambiguous data points alike. We minimize the generalized 

mean of errors of each data point w.r.t. each of its target la- 

bels. Notice that the generalized mean of errors boils down to 

the traditional error function for an umambiguous data point. 

2. We prepare a set of 20 artificial datasets having ambigu- 

ously labeled data points. The datasets, which are diverse 

in terms of structure, dimensions, and extent of ambiguity, 

can be found at: https://dataverse.harvard.edu/dataset.xhtml? 

persistentId=doi%3A10.7910%2FDVN%2FO4RIRM . 

3. The proposed method is tested on the 20 artificial datasets cre- 

ated by us and on 10 other real-life ambiguous datasets (with- 

out ground truth information), from various fields like bioinfor- 

matics, video annotation, etc. We compare its performance with 

those of three alternative ambiguity resolution strategies and a 

neural network based multi-label classifier called BP-MLL [37] . 

4. We establish the better performance of our proposed ambigu- 

ity resolver compared to the multi-label classifier BP-MLL on 

datasets where ground truth is available. To simulate noisy la- 

beled datasets we use 6 real-life datasets from the UCI reposi- 

tory [18] following [35] . To illustrate our algorithm’s improved 

immunity against inexperienced, misguided and/or biased ex- 

perts we also conduct experiments on the LOST and EMA 

datasets. We conduct Wilcoxon signed rank [6] and Mann–

Whitney U tests [10] to establish the superiority of the pro- 

posed learner in a statistically significant way. 

Organization of this paper is in order. We derive the expres- 

sions for the proposed back-propagation method in Section 2 . Sub- 

sequently, in Section 3 , we describe the used datasets and the ex- 

perimental procedure. Next in the same section, we present the 

experimental results and analyse them. We finally conclude the ar- 

ticle with a brief summary and remarks in Section 4 . 

2. Generalized mean multi-layer perceptron 

MLP [12] is a popular non-parametric supervised learner hav- 

ing a network architecture. Hence, it does not require any prior 

assumptions about the class distributions of the datasets to be 

learned and can effectively generate non-linear separation bound- 

aries to distinguish between structurally complex classes. The 

structure of an MLP is simple and highly parallel in nature, making 

it suitable for high-dimensional data processing. Back-propagation 

of errors [25] , scaled conjugate gradient method [21] , and many 

other learning algorithms have been designed to train MLPs. All 

these factors have influenced us to use MLP as the underlying su- 

pervised learner for ambiguity resolution. We refer to the proposed 

MLP based ambiguity resolver as Generalized Mean Multi-Layer Per- 

ceptron (GMMLP), the details of which are presented in the rest of 

this section. 

2.1. Generalized mean based error function 

Let us consider an MLP consisting of an input layer of (d + 1) 

nodes, a single hidden layer having α nodes, and an output hav- 

ing C nodes (as many nodes as the number of possible classes). 

Let u kb denote the weight of the connection from the k th input 

node to the b th hidden node, and let u 0 b denote the bias term of 

the b th hidden node. Similarly, let v br denote the weight of the 

connection from the b th hidden node to the r th output node, and 

let v 0 r denote the bias term of the r th output node. Moreover, let 

U = [ u kb ] d×α, u 0 = [ u 0 b ] α×1 , V = [ v br ] α×C , and v 0 = [ v 0 r ] C×1 denote 

the matrices and vectors of the weights and the bias terms. Let the 

activation function be the sigmoid function 

ψ(x ) = 

1 

1 + e −γ x 
, (2) 

where we set the skewness parameter γ = 1 , in keeping with gen- 

eral conventions. 
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