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a b s t r a c t 

Using deeply recurrent neural networks to account for temporal dependence in electroencephalograph 

(EEG)-based workload estimation is shown to considerably improve day-to-day feature stationarity re- 

sulting in significantly higher accuracy ( p < .0 0 01) than classifiers which do not consider the temporal 

dependence encoded within the EEG time-series signal. This improvement is demonstrated by training 

several deep Recurrent Neural Network (RNN) models including Long Short-Term Memory (LSTM) archi- 

tectures, a feedforward Artificial Neural Network (ANN), and Support Vector Machine (SVM) models on 

data from six participants who each perform several Multi-Attribute Task Battery (MATB) sessions on five 

separate days spread out over a month-long period. Each participant-specific classifier is trained on the 

first four days of data and tested using the fifth’s. Average classification accuracy of 93.0% is achieved us- 

ing a deep LSTM architecture. These results represent a 59% decrease in error compared to the best previ- 

ously published results for this dataset. This study additionally evaluates the significance of new features: 

all combinations of mean, variance, skewness, and kurtosis of EEG frequency-domain power distributions. 

Mean and variance are statistically significant features, while skewness and kurtosis are not. The overall 

performance of this approach is high enough to warrant evaluation for inclusion in operational systems. 

Published by Elsevier B.V. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Teams composed of both humans and machines can potentially 

work together to mitigate their respective inherent weaknesses. 

A computer’s strength is manifested in its ability to quickly and 

correctly compute answers, while humans exhibit superior flexi- 

bility of response to unexpected situations. Thus, Human-Machine 

Teams (HMTs) promise to mitigate inherent limitations on compu- 

tational decision-making in all-human teams while simultaneously 

reducing the brittleness and inflexibility of fully-autonomous sys- 

tems [11] . Team outcomes are improved when one agent (human 

or computer) assists another in the right way at the right time 

[7] . For computers to help humans in HMTs, they must know the 

human’s cognitive state; this knowledge can be obtained through 
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operator functional state assessment (OFSA) [45] . Several meth- 

ods of OFSA exist, which can generally be broken into two classes 

of measures–objective and subjective. Subjective measures usually 

ask the operator to evaluate themselves either during or after the 

task, while objective measures use a physiological sensor such as 

electroencephalograph (EEG) or electrocardiogram (ECG) to provide 

inputs to an algorithm that assesses the operator’s functional state. 

The benefit of objective measures is that they do not interrupt 

the operator while performing the task [41,42] . Continuous non- 

interrupting state assessment is an important characteristic for vi- 

able HMTs outside the laboratory. 

A key subarea of research within OFSA is mental workload esti- 

mation. Enabling the machine in a human-machine team to unob- 

trusively and continuously ascertain the operator’s mental work- 

load is the first step in closing the machine-to-human augmen- 

tation loop. In order for augmentation to be effective, it must be 

driven by an accurate estimate of mental workload [7] . A common 
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method for estimating mental workload is to first use statistical 

machine learning to fit a model which enables prediction of mental 

workload from the physiological signals, and then use that model 

to make mental workload estimates from newly-gathered physio- 

logical signals [44] . 

The utility of an OFSA system will depend on the benefits of ac- 

curate assessment and the costs of errors. This cost-benefit trade- 

off will be application-specific and different for correctly identify- 

ing high and low workload states depending on the types of aug- 

mentation tied to a given state and the consequences of incor- 

rect/inappropriate activation or lack of activation. These errors di- 

rectly impact an operator’s trust in the automation, in-turn affect- 

ing future utility of that automation in a closed loop-fashion [28] . 

Rouse et al. [35] indicated that a 95% accuracy rate for workload 

estimation may be required for a system to be acceptable. Para- 

suraman et al. [31] went further and suggested that if the system 

does not approach 100% accuracy then the costs of inaccuracy and 

lack of trust may lead to the system being unacceptable, especially 

in safety-critical environments. 

Unfortunately, current state-of-the-art systems are not yet able 

to achieve the required accuracy, due in part to the challenge of 

temporal non-stationarity in psychophysiological signals. This chal- 

lenge relates to variation over longer periods of time and depen- 

dence within shorter periods. Both can negatively impact the gen- 

eralizable long term accuracy of workload assessment systems [7] . 

Within shorter spans of time, signals tend to exhibit hysteresis or 

serial dependence. This suggests that there is inherent structure in 

the statefulness in the brain that can be exploited with appropri- 

ate machine learning techniques. While it is difficult to attribute 

this dependence to any discrete set of factors, some of the likely 

possibilities include consistency in default mode activity [34] and 

hysteresis exhibited by most physiological systems. 

In the context of machine learning, temporal non-stationarity 

can be addressed in two ways. The first is through feature genera- 

tion or selection. A better set of features will exhibit less long-term 

non-stationarity and will lead to better model performance. In this 

work, we examine several feature generation techniques to deter- 

mine empirically if certain feature sets are superior to others. The 

second way to address non-stationarity with machine learning is to 

use algorithms that make different assumptions about the nature 

of the data being processed. As it stands, most published research 

on operator workload estimation implicitly assumed temporal in- 

dependence from one time segment to the next. This is likely a 

poor assumption due to both the factors discussed above as well 

as longer term effects such as fatigue and performance hysteresis 

with mental workload transitions [22] . An example from aviation 

illustrates this nicely. If a pilot has just completed flying an in- 

strument approach in instrument meteorological conditions (IMC) 

when an unexpected emergency requires attention, pilot workload 

will increase differently than if the pilot had the same unexpected 

emergency arise following a period of autopilot-on flight at cruis- 

ing altitude in visual meteorological conditions (VMC). This sim- 

ple example illustrates that what has happened in the recent past 

temporally, matters for operator workload assessment. 

Machine learning algorithms that consider past information as 

well as current information when fitting models should perform 

better. Such algorithms must be able to learn a temporal represen- 

tation of the data. A common model used for modeling temporal 

data is the Recurrent Neural Network (RNN). RNNs are neural net- 

works that are able to learn sequences that are not composed of 

independent, identically distributed observations [16] . Rather, they 

are able to elicit the context of observations within sequences and 

accurately classify sequences that have strong temporal correla- 

tions [16] . Historically, RNNs had limitations when training models 

with more than 10–20 time steps which led to poor performance. 

Incorporating longer time-series data streams would cause compu- 

tational sensitivity problems that stymied RNN training. 

Recent developments have resulted in RNN architectural and 

training advances which mitigate these computational problems 

and allow much longer temporal sequences to be processed. One 

approach is the Long Short-Term Memory (L STM) layer. L STM ar- 

chitectures extend the length of sequences that can be considered 

by a RNN by overcoming computational sensitivities encountered 

during backpropagation [21] . For these reasons, they may offer im- 

proved workload classification accuracy over other methods when 

using EEG data. With these improvements in machine learning, 

there is no longer a reason to avoid incorporating temporal con- 

text in a workload model. We capitalize on these machine learning 

developments in our research. 

The primary contribution of this research is demonstration of 

significantly improved cross-day workload classification accuracy 

by integrating contextually relevant algorithmic architectures with 

improved feature generation techniques. We statistically evalu- 

ate all combinations of mean, variance, skewness, and kurtosis of 

frequency-domain power distributions and contrast a variety of 

RNN architectures, to include deeply stacked LSTMs, with base- 

line algorithms and features. Both linear and Radial Basis Func- 

tion (RBF) Support Vector Machines (SVMs) and single-layer feed- 

forward Artificial Neural Network (ANNs) using mean-only features 

are used as baseline cases. We show that by accounting for tem- 

poral dependence using deep LSTM models trained with new fea- 

ture combinations, we can maximize cross-day workload estima- 

tion accuracy resulting in a 58% reduction in classification error 

over baseline methods and a 59% decrease in error compared to 

the best published results for this dataset. 

2. Background and related work 

Temporal non-stationarity of electroencephalograph (EEG) sig- 

nals within individuals is likely caused by a large number of in- 

trinsic and extrinsic factors. Participant motivation and mental or 

physical readiness are examples of some intrinsic factors; extrinsic 

factors include significant differences in EEG electrode placement, 

changes in conductance, and different motion artifacts [8,23,30] . 

Due to the challenge of handling these factors, cross-day non- 

stationarity of EEG signals has motivated a number of related stud- 

ies including several using the same dataset described below. 

2.1. Dataset 

Data for our investigation was used in the 2011 Cognitive State 

Assessment Competition [13] and was recorded during a prior hu- 

man research study performed by Wilson et al. [43] . Eight partici- 

pants completed scenarios within the Multi-Attribute Task Battery 

(MATB) [10] environment across five test days spread out over a 

month-long period. Monitoring, communication, resource manage- 

ment, and tracking tasks were presented and manipulated to in- 

duce three levels of difficulty: low, medium, and high [8,43] . Re- 

source allocation errors, monitoring task reaction times, and com- 

munication response times were recorded and used to validate 

that participants experienced distinct low and high difficulty lev- 

els. Participants were trained to asymptotic proficiency prior to the 

first test day [43] . 

For each participant, horizontal electrooculogram (HEOG), verti- 

cal EOG (VEOG), and 19 channels of EEG voltages (according to the 

International 10–20 System) were sampled at 256 Hz. On each of 

the five days, each participant performed three five-minute trials at 

low, medium, and high difficulty for a total of nine trials per day. 

Trials were presented in a random ordering with transition periods 

in between. Each participant completed a 30 s resting baseline at 

the start of each session prior to the MATB task. Only six of the 

participants were used in our study due to missing data from two 

of the original eight participants [19] . Similar to Christensen et al. 
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