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a b s t r a c t

Hyperspectral imaging acquires up to several hundreds of narrow and adjacent spectral band images simultane-
ously. However, since the dimension of the hyperspectral imaging data, which typically forms a third order tensor,
is increased in proportion to the size of spatial and the spectral information at the same time, the higher order
singular value decomposition (HOSVD) is appropriate to reduce its dimension. One of the simplest and most
accurate approaches for computing the HOSVD is higher order orthogonal iteration (HOOI), which computes
the factor matrices from the unfolding matrices of the given tensor by using singular value decomposition
alternatively until convergence is achieved. However, because of its expensive computational complexity, we
propose a faster algorithm to compute the HOSVD even though the output shows no meaningful difference from
that obtained by HOOI. Specifically instead of computing the factor matrix from the updated tensor in every
iteration along each mode, we reuse the intermediate result after updating one factor matrix to modify the others
in a single iteration. Numerical experiments reveal that the proposed algorithm computes the dimension-reduced
hyperspectral imaging much faster than HOOI with fewer outer iterations. Moreover, the difference in accuracy
between the proposed algorithm and HOOI is negligible.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Hyperspectral imaging (HSI), also called imaging spectrometer tech-
nique, collects and processes information of a target scene across the
electromagnetic spectrum. It has been used for various applications,
for instance, in face detection, biology, and automatic visual inspection
systems, to improve target detection and classification [1], to identify
materials [2], or to detect anomalies [3]. The HSI sensor achieves
this by acquiring up to several hundreds of narrow and adjacent spec-
tral band images ranging from ultraviolet to far-infrared wavelengths,
simultaneously. The HSI disperses the incoming light spectrum into
different wavelengths by employing dispersing element such as a prism
or grating. This divided light is captured by the CCD or CMOS sensor
as a two-dimensional image R𝑋×𝜆, where 𝑋 represents the spatial
information of the image, and 𝜆 indicates the spectral information.
Covering the entire area of the target image requires the sensor to
capture a snapshot of every line across the target area along the 𝑌 -
direction, after which it reconstructs the results as a three-dimensional
structure 𝑋 × 𝑌 × 𝜆. Because its three-dimensional structure comprises
the spatial information 𝑋×𝑌 and spectral ranges 𝜆, multi-way arrays or
tensors are expected to be the most appropriate structure to manipulate
the HSI data. However, one problem may arise from the fact that large
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volumes of imaging data and the number of spectral bands require
considerable computational resources while manipulating a tensor,
thus some compression techniques that are computationally efficient
must be considered. Specifically, we consider Tucker decomposition to
reduce the dimension of the given HSI which enables filtering out the
unnecessary part of the tensor such as noise.

Together with the CANDECOMP/PARAFAC decomposition for ten-
sor analysis, Tucker decomposition is probably one of the most widely
used tensor decomposition techniques due to the fact it was originally
invented for application to psychometrics by Tucker [4,5]. Since then it
has found numerous applications, such as signal processing [6,7], image
processing and computer vision [8,9] as well as dimension reduction in
HSI, owing to its simplicity and ease of use. Tucker decomposition is
used to decompose a higher-order tensor into a core tensor multiplied by
a matrix along each mode. For example, consider an 𝑁th order tensor
 ∈ R𝐼1×⋯×𝐼𝑁 , where 𝐼𝑛, 1 ≤ 𝑛 ≤ 𝑁 , represents the size of the 𝑛th
dimension at  . Tucker decomposition decomposes  as

 = ⋅𝑛=1 to 𝑁𝐔𝑛, (1)

where 𝐔𝑛 ∈ R𝐼𝑛×𝑅𝑛 , 1 ≤ 𝑛 ≤ 𝑁 represents the factor matrix, and
the tensor  ∈ R𝑅1×⋯×𝑅𝑁 denotes the core tensor, respectively. If the
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multilinear ranks (𝑅1,… , 𝑅𝑁 ) are less than (𝐼1,… , 𝐼𝑁 ) respectively,
then the core tensor  is considered as the compressed tensor of  .

As the constraint Tucker decomposition, the higher order singular
value decomposition (HOSVD) restricts its factor matrices to be orthog-
onal. Specifically, the factor matrix 𝐔𝑛, 1 ≤ 𝑛 ≤ 𝑁 in (1) satisfies
𝐔𝑇
𝑛 𝐔𝑛 = 𝐼 , and the core tensor  has the property of ordering and

all-orthogonality: any two slices of  are orthogonal [10]. Since a
general Tucker decomposition can be converted into an orthogonal
Tucker decomposition with an equal decomposition error, we consider
the HOSVD to compute factor matrices and a core tensor to compute
the dimension reduced HSI tensor. The simplest way of computing the
HOSVD is to compute the leading singular vectors of each unfolding
matrix from  [10], however, it does not guarantee that the solution is
optimal. Later, De Lathauwer et al. proposed a more accurate technique
for calculating factor matrices and a core tensor with an orthogonal
constraint, which was denoted as the higher order orthogonal iteration
(HOOI) [11]. This algorithm has a limitation as well, since it requires
the iterative computation of the singular value decomposition (SVD)
from the large matrices unfolded from the tensor. Therefore, it demands
substantial amount of computational resources. HOOI has another
limitation, because its output may not be optimal. However, since HOOI
produces more accurate results than HOSVD as mentioned in [10] in
most cases, it is still one of the most well-known methods to compute
the HOSVD.

In this letter, our method reduces the spectral and spatial dimensions
of the HSI data in a fast and efficient manner. Specifically, we achieve
faster computation than HOOI without using SVD, and apply it to the
dimension reduction of the HSI data. Consequently, it can be used
to improve the performance of denoising HSI, preprocess before the
object detection in HSI, or transmit large volumes of imaging data. The
remainder of this letter is organized as follows: Section 2 presents some
definitions and explanations of basic tensor algebra. Section 3 briefly
introduces the HOOI algorithm. In Section 4, we propose the algorithm
that enhances the computational speed to compute the HOSVD. Section
5 contains numerical experiments to enable a comparison of the per-
formance with that of the other HOSVD algorithms. In Section 6, we
conclude this study.

2. Notations and preliminaries

We start by defining the symbols and terminologies that are consis-
tently used in the letter. We ensure that components of Tensor Algebra
are distinguished more easily by denoting these tensors by calligraphic
letters, e.g.,  . Matrices, vectors, and scalars are written in boldface
capital letters (e.g. 𝐓), boldface lowercase letters (e.g. 𝐭), and lowercase
letters (e.g. 𝑡), respectively.

The mode-𝑛 product of the tensor  by the matrix 𝐀 ∈ R𝑅𝑛×𝐼𝑛

generates the tensor in R𝐼1×⋯×𝐼𝑛−1×𝑅𝑛×𝐼𝑛+1×⋯×𝐼𝑁 with updated elements
such that

( ⋅𝑛𝐀)𝑖1 ...𝑖𝑛−1𝑟𝑛𝑖𝑛+1 ...𝑖𝑁 =
𝐼𝑛
∑

𝑖𝑛=1
𝑥𝑖1𝑖2 ...𝑖𝑁 𝑎𝑟𝑛𝑖𝑛 ,

for all 𝑟𝑛, 1 ≤ 𝑟𝑛 ≤ 𝑅𝑛.
The Frobenius norm of the tensor  ∈ R𝐼1×𝐼2×⋯×𝐼𝑁 is the square root

of the squares of all elements in  such that

‖ ‖𝐹 =

√

√

√

√

√

𝐼1
∑

𝑖1=1

𝐼2
∑

𝑖2=1
...

𝐼𝑁
∑

𝑖𝑁=1
𝑥2𝑖1𝑖2 ...𝑖𝑁 .

The tensor  can be flattened as the matrix form,

𝐓𝑛 ≈ 𝐔𝑛𝐆𝑛(⊗𝑖=1 to 𝑁,𝑖≠𝑛𝐔𝑇
𝑖 ), (2)

where 𝐓𝑛 indicates the mode-𝑛 unfolding matrix, which reorders its
elements of  into the matrix 𝐓𝑛 properly [10]. Likewise, 𝐆𝑛 represents
the mode-𝑛 unfolding matrix of . We note that the symbol ⊗ denotes

the Kronecker product. Assume we have invertible matrices 𝐀 and 𝐁.
The Kronecker product has the following useful properties.

(𝐀⊗ 𝐁)𝑇 = 𝐀𝑇 ⊗ 𝐁𝑇 ,

(𝐀⊗ 𝐁)−1 = 𝐀−1 ⊗ 𝐁−1. (3)

3. Higher order orthogonal iteration

In this section, we briefly summarize the HOOI algorithm. Let the
orthogonal factor matrices of  be 𝐔𝑛, 1 ≤ 𝑛 ≤ 𝑁 . Then the formulation
of the optimization problem of finding 𝐔𝑛 and the core tensor  is given
by

min
,𝐔𝑛 ,𝑛=1 to 𝑁

‖ − ⋅𝑛,𝑛=1 to 𝑁𝐔𝑛‖𝐹 ,

subject to 𝐔𝑇
𝑛 𝐔𝑛 = 𝐼. (4)

Since  satisfies  =  ⋅𝑛,𝑛=1 to 𝑁𝐔𝑇
𝑛 from (2) and (3), we reformulate the

optimization problem (4) as

‖ − ⋅𝑛,𝑛=1 to 𝑁𝐔𝑛‖𝐹 = ‖ ‖𝐹 − ‖‖𝐹 ,

and the equation (4) is equivalent to finding the solution of maximizing
the problem

max ‖ ⋅𝑛,𝑛=1 to 𝑁𝐔𝑇
𝑛 ‖𝐹 . (5)

If we matricize (5) with mode-𝑛 such that

max ‖𝐔𝑇
𝑛 𝐒‖𝐹 ,

where 𝐒 = 𝐓𝑛⊗𝑖=𝑁to1,𝑖≠𝑛𝐔𝑖, then 𝐔𝑛 is obtained from the singular
value decomposition (SVD). By fixing the other factor matrices, we can
compute 𝐔𝑛 from the 𝑅𝑛 leading singular vectors of 𝐒 while satisfying
the orthogonal constraint. Once 𝐔𝑛 is computed, the next step is to find
the other factor matrix along each mode while fixing 𝐔𝑛. This procedure
is continued until it converges to the solution.

The HOOI algorithm enables the computation of factor matrices and
a core tensor from a tensor in the sense of simplicity and efficiency.
Subsequently, many algorithms have been proposed to speed up the
HOOI algorithm. For example, Eldén and Savas introduced the Newton–
Grassmann optimization, which requires less iterations than HOOI and
converges numerically to the solution with quadratic convergence [12].
Ishteva, et al. proposed the Riemannian trust-region-based algorithm
with the similar aim of reducing the number of iterative cycles [13].
However, those methods demand very expensive computations in a
single iterative step. Phan et al. suggested a fast algorithm of HOSVD
by using a Crank–Nicholson-like algorithm in order to avoid using
SVDs [14].

4. Derivation of the algorithm

The proposed algorithm was motivated by the idea that the result
of updating one factor matrix affects other factor matrices such that
all factor matrices can be modified in a single iterative step. This can
be expected to lead to faster convergence to the solution with less outer
iteration than is required by HOOI. Additionally, we pursue using simple
computation of the factor matrices rather than using the SVD so that
most of the computations exploit matrix–matrix multiplications instead
of matrix decomposition. For simplicity, and to apply the algorithm to
the dimension reduction of HSI , we consider the tensor  as a third-
order tensor with the size 𝐼1 ×𝐼2 ×𝐼3. Rewrite the optimization problem
of finding the orthogonal factor matrices in (4) as

min
,𝐔𝑛 ,𝑛=1 to 3

‖ − ⋅𝑛=1 to 3𝐔𝑛‖𝐹 . (6)

We next explain the computation of the factor matrices 𝐔𝑛 from the
order of (1,2,3) mode in a single iterative step as an example. Without
loss of generality, the order can be interchangeable in different ways.
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