Accepted Manuscript

Electrical characterization of top-gated molybdenum disulfide field-effect-transistors with high-k dielectrics

Pavel Bolshakov, Peng Zhao, Angelica Azcatl, Paul K. Hurley, Robert M. Wallace, Chadwin D. Young

PII:	S0167-9317(17)30190-9
DOI:	doi: 10.1016/j.mee.2017.04.045
Reference:	MEE 10550
To appear in:	Microelectronic Engineering
Received date:	23 February 2017
Revised date:	10 April 2017
Accepted date:	27 April 2017

Please cite this article as: Pavel Bolshakov, Peng Zhao, Angelica Azcatl, Paul K. Hurley, Robert M. Wallace, Chadwin D. Young , Electrical characterization of top-gated molybdenum disulfide field-effect-transistors with high-k dielectrics, *Microelectronic Engineering* (2017), doi: 10.1016/j.mee.2017.04.045

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrical characterization of top-gated molybdenum disulfide field-effect-transistors with high-

k dielectrics

Pavel Bolshakov^{(1)*}, Peng Zhao⁽¹⁾, Angelica Azcatl⁽¹⁾, Paul K. Hurley⁽²⁾, Robert M. Wallace⁽¹⁾, and Chadwin D. Young⁽¹⁾

¹Department of Materials Science and Engineering, The University of Texas at Dallas,

800 West Campbell Road, Richardson, Texas 75080, USA

²*Tyndall National Institute, University College Cork,*

Lee Maltings Complex, Dyke Parade, Mardyke, Cork, Ireland

*Corresponding author, pavel.bolshakov@utdallas.edu

Abstract

High quality HfO₂ and Al₂O₃ substrates are fabricated in order to study their impact on top-gate MoS₂ transistors. Compared with top-gate MoS₂ FETs on a SiO₂ substrate, the field effect mobility decreased for devices on HfO₂ substrates but substantially increased for devices on Al₂O₃ substrates, possibly due to substrate surface roughness. A forming gas anneal is found to enhance device performance due to a reduction in charge trap density of the high-k substrates. The major improvements in device performance are ascribed to the forming gas anneal. Top-gate devices built upon Al₂O₃ substrates exhibit a near-ideal subthreshold swing (SS) of ~69 mV/dec and a ~10× increase in field effect mobility, indicating a positive influence on top-gate device performance even without any backside bias.

Keywords: MoS₂; top-gated transistor; HfO₂; Al₂O₃; high-k; substrate;

Download English Version:

https://daneshyari.com/en/article/4970843

Download Persian Version:

https://daneshyari.com/article/4970843

Daneshyari.com