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An advanced approximate integration scheme called eigenvector dimension reduction (EDR) method is imple-
mented to predict the assembly yield of a plastically encapsulated package. A total of 12 manufacturing input var-
iables are considered during the yield prediction, which is based on the JEDEC reflow flatness requirements. The
method calculates the statisticalmoments of a system response (i.e., warpage)first throughdimensional reduction
and eigenvector sampling, and a probability density function (PDF) of random responses is constructed subse-
quently from the statistical moments by a probability estimation method. Only 25 modeling runs are needed to
produce an accurate PDF for 12 input variables. The results prove that the EDR provides the numerical efficiency
required for the tail-end probability prediction of manufacturing problemswith a large number of input variables,
while maintaining high accuracy.
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1. Introduction

Epoxy molding compound (EMC) has been used extensively as a
protection layer in various semiconductor packaging components. The
mismatch of coefficient of thermal expansion (CTE) causes thewarpage
of components after molding, which is one of the most critical issues to
board assembly yield. The warpage issue has become more critical as
Package-on-Package (PoP) and fan-out wafer level package (FO-WLP)
are widely adopted for portable devices.

The computer-aided engineering (CAE) tools, such as the finite ele-
mentmethod (FEM), have been used extensively to predict thewarpage.
Typically, the CAE tools provide deterministic outputs, which establish
quantitative relationships between the system response (i.e., warpage)
and the input parameters such as geometries, material properties, pro-
cess and/or environmental conditions, etc. The deterministic approaches
have been proven effective for comparing competitive designs. In reality,
the package warpage behavior shows statistical variations (or probabili-
ty distributions) due to inherent manufacturing variabilities. The proba-
bilistic aspect should be incorporated in prediction if the assembly yield
is to be predicted.

The yield loss is in general a small probability event (i.e., tail-end
probability) [1–3], especially for the large production volume. In many
cases, even 0.1% yield loss would cause a significant profit loss. Based
on the Six Sigma concept, the target is often to control the yield losswith-
in 3 to 6 sigma, i.e., 6.67% to 3.4 ppm [4].

Fig. 1 shows a schematic illustration of the tail-end probability,where
the statistical property of system performance (e.g., warpage) is repre-
sented by a probability density function (PDF). When a component has
the performance exceeding or falling behind a certain specification, it
cannot be processed further and is regarded as a failure. The probability
of all possible failure, i.e., yield loss, is the area under the PDF where the
performance does not satisfy the specification.

A technical approach critically required for the yield loss prediction is
the uncertainty propagation analysis, which enables the intrinsically de-
terministic computational model to characterize the output distribution
in the presence of input uncertainties. The most popular uncertainty
propagation methods are “random sampling method” and “response
surface method (RSM)”. When they are applied to complexmanufactur-
ing problems with a large number of input variables, however, they be-
come impractical due to their own limitations.

Due to its random nature, the failure probability estimated from the
random sampling method, e.g., Monte Carlo simulation (MCS), exhibits
statistical variations [5]. The variations can be substantial when the tail-
end probability is to be predicted. In order to ensure that the tail-end

Microelectronics Reliability 78 (2017) 319–330

⁎ Corresponding author.
E-mail address: bthan@umd.edu (B. Han).

https://doi.org/10.1016/j.microrel.2017.09.006
0026-2714/© 2017 Elsevier Ltd. All rights reserved.

Contents lists available at ScienceDirect

Microelectronics Reliability

j ourna l homepage: www.e lsev ie r .com/ locate /microre l

http://crossmark.crossref.org/dialog/?doi=10.1016/j.microrel.2017.09.006&domain=pdf
http://dx.doi.org/10.1016/j.microrel.2017.09.006
mailto:bthan@umd.edu
Journal logo
http://dx.doi.org/10.1016/j.microrel.2017.09.006
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/microrel


probability prediction falls within the specified accuracy tolerance, an
extremely large number of model computations is required. This com-
putational burden makes the random sampling impractical for the
cases that require complex nonlinear computationalmodels (e.g., visco-
elastic analysis required for warpage prediction of plastically encapsu-
lated components) [6].

The RSMhas also beenwidely used in conjunctionwith theMCS [7,8]
to reduce the computational burden. The RSM relies on Design of Exper-
iments (DOE) to build computationally inexpensive mathematical re-
sponse surface models, which can be used for the direct MCS. Two
commonly used types of DOE are the Full Factorial Design (FFD) [9–11]
and the Central Composite Design (CCD) [12–14]. Although the CCD
can reduce the sample size of the FFD substantially, both types cannot
avoid the challenge known as the curse of dimensionality (i.e., the com-
putational costs increase exponentially as the number of random input
variables increases). Due to this inherent limitation, the RSM has been
applied to the designs with only a few input variables.

Another method for the uncertainty propagation analysis is “approx-
imate integration scheme”. The scheme calculates the statistical mo-
ments of the output response by performing a multi-dimensional
integration. Seo and Kwak proposed a numerical algorithm to perform
the integration [15]. The algorithmalso suffered from the curse of dimen-
sionality as the FFDwas used to select integration points. Rahman andXu
proposed the univariate dimension-reduction (UDR) method to cope
with the curse of dimensionality [16]. With the method, a multi-dimen-
sional integration is transformed into a series of one-dimensional inte-
grations, and thus the computational cost increases only additively
with the increased number of input variables. This additive increase
makes the method attractive to the problems with a large number of
input variables.

In a typical UDR implementation, however, a large number of nu-
merical integration points are still required to ensure the accuracy of
each one-dimensional integration result. For a large number of input
variables, the method also can be computationally expensive. Youn et
al. developed a method called “eigenvector dimension-reduction
(EDR)” method [17] to relax the requirement of the UDR method. In
the EDRmethod, the eigenvector sampling schemewas proposed to se-
lect a few sample points along the eigenvectors of the covariancematrix
of the input variables, and the stepwisemoving least square (SMLS)was
implemented to interpolate and extrapolate the numerical integration
points. As a result, the accuracy of statistical moment estimation by
EDR remained virtually unaffected although the number of simulations
was reduced substantially.

In this paper, the EDRmethod is implemented to predict the assem-
bly yield of a plastically encapsulated package. A total of 12manufactur-
ing input variables are considered during the yield prediction, which is
based on the JEDEC reflow flatness requirements. Section 2 provides a
brief introduction of the EDR method. In Section 3, the details of an
EDR implementation are described. The accuracy of the yield prediction
is verified by the direct MCS in Section 4. Section 5 concludes the paper.

2. Eigenvector dimension reduction method

The eigenvector dimension-reduction (EDR) method estimates the
complete probability density function (PDF) of a system response by
(1) calculating the statistical moments and (2) constructing the corre-
sponding PDF using the probability estimation methods.

The statistical moments are the characteristics of a distribution. The
1st moment, μ, is the mean, which represents the central tendency of
the distribution, and the 2nd moment is the standard deviation, σ,
which represents the spread of the distribution. The 3rd and 4th mo-
ments are skewness, β1, and kurtosis, β2, which indicate the symmetry
and the peakedness of the distribution, respectively. Themth-order sta-
tistical moment of a system response is defined as

E Y X1;…;XNð Þ½ �m� �
≡
Zþ∞

−∞

⋯
Zþ∞

−∞

Y X1;…;XNð Þf gm f X1 ;…;XN
X1;…;XNð ÞdX1⋯dXN

ð1Þ

where E(·) is the expectation operator; Y(X1,…,XN)is the system re-
sponse with N random input variables, X1 ,… ,XN (i.e., N dimensions);
and fX1,… ,XN

(X1,…,XN) is the joint probability density function. In this
paper, the capital letters are used to denote the input variables.

To tackle the mathematical challenge associated with the multidi-
mensional integration in Eq. (1), Rahman and Xu proposed the additive
decomposition [16] to transform the multidimensional response func-
tion Y(X1,…,XN) into a series of one-dimensional functions. The approx-
imated system response function, then, can be expressed as [16]:

Y X1;…;XNð Þ ≈ Ya X1;…;XNð Þ ¼
XN
j¼1

Y μ1;…; μ j−1;X j; μ jþ1;…; μN

� �
− N−1ð Þ � Y μ1;…; μNð Þ

ð2Þ

where Ya is the approximated system response function obtained by the
additive decomposition, μj is the mean value of an input variable, Xj,
Y(μ1,…,μj−1,Xj,μj+1,…,μN) is the system response of the input variable,
Xj, while the other input variables are kept as their respective mean
values, and Y(μ1,…,μN) is the system response with all input variables
are fixed as their mean values.

Substituting Eq. (2) into Eq. (1) yields:
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Using the binomial formula, the right-hand side of Eq. (3) can be re-
written as [16]:
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Fig. 1. Illustration of a yield loss (tail-end probability).
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