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a b s t r a c t

With technological developments in robotics and their increasing deployment, human-robot teams are
set to be a mainstay in the future. To develop robots that possess teaming capabilities, such as being able
to communicate implicitly, the present study implemented a closed-loop system. This system enabled
the robot to provide adaptive aid without the need for explicit commands from the human teammate,
through the use of multiple physiological workload measures. Such measures of workload vary in
sensitivity and there is large inter-individual variability in physiological responses to imposed taskload.
Workload models enacted via closed-loop system should accommodate such individual variability. The
present research investigated the effects of the adaptive robot aid vs. imposed aid on performance and
workload. Results showed that adaptive robot aid driven by an individualized workload model for
physiological response resulted in greater improvements in performance compared to aid that was
simply imposed by the system.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The population of robots in the world reached 8.6 million in
2010 (Guizzo, 2010). In 2016, the global robotics market was worth
$25.9 billion USD. This is expected to reach $31.5 billion USD in
2021, expanding at a compound annual growth rate of 4.0%
(Wilson, 2016). Although traditionally robots have been assigned
tasks that are typically “dirty, dangerous, and dull” (Takayama et al.,
2008), in recent years, increased robot functionality has resulted in
their deployment in a greater variety of domains such as in bomb
disposal, search and rescue missions, manufacturing (Guizzo and
Ackerman, 2012), as surgical robots in healthcare (da Vinci
surgery, 2013), and as robot assistants for the elderly or disabled
(Kumar et al., 2006) in which their more intelligent contributions
are now being mandated.

Despite these advances, robots are still largely teleoperated via
remote control and require explicit commands, which confines
their use to relatively structured tasks. To enable robots to operate

in more novel environments, performing less structured tasks, ro-
bots must be capable of richer human-robot communications that
may approach that exhibited in human teams (DRC, 2013). Robots
with such capability should be more responsive to humans and
exhibit behaviors that approximate teaming, including sensing the
human operator's psychological status such as experienced work-
load and fatigue. One possible strategy for enhancing capability is
through the use of a closed-loop system that adapts the robot to
provide appropriate support when the human becomes overloaded
(see Hancock and Chignell, 1988).

1.1. New technology for human-robot communication

A closed-loop system uses feedback or error signals to drive
corrective actions that maintain a desired system state (homeo-
stasis). Such systems have been in existence for several centuries,
with many modern examples (e.g., thermostats, cruise control in
cars). However their use in the human-robot teaming context is
relatively recent. A closed, feedback loop, using measures of the
human operator's workload as input, could allow selection of robot
aiding behaviors that maintain the operator's workload state at a
moderate target level (see Hancock and Chignell, 1987). Hence, if
the operator is experiencing high workload to the point that
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jeopardizes his/her performance, the robot can aid by relieving the
operator of certain tasks. Robot teammates' behavioral repertoire
can include aiding with subtasks without being instructed to do so,
such as anticipating needs by appropriately escalating information,
and initiating actions such as messaging for help instead of
requiring the operator to do so him/herself. When operator work-
load state returns to more manageable levels, the robot can adapt
its behaviors to return full task control to the human teammate.
Adaptive reversion of task control to the human teammate may
minimize the often-cited problems associated with having the
human “out-of-the-loop” such as the loss of situational or system
awareness, increased complacency, over-reliance issues, skill atro-
phy, performance degradations, and unbalanced mental workload
(Carmody and Gluckman, 1993; Endsley and Kiris, 1995;
Parasuraman and Wickens, 2008; Smith and Hancock, 1995).

Critically, the robot must be capable of detecting this human
overload implicitly, without overt instructions. Implicit communi-
cations is crucial where the operator is unable to issue explicit in-
structions. For instance, the operator may be experiencing such
high workload but task demands prevent him or her from being
able to instruct the robot on how to assist. It is also possible that
operators may not be aware of their own workload state when
intensely engaged in the task at hand.

The closed-loop system therefore requires a workload model
that assesses and classifies operator workload without operator
input. Subjective workload responses tend to disrupt performance
as they require the operators’ explicit reports. In contrast, physio-
logical measures of workload allow continuous assessment, pro-
vide high temporal resolution, and rarely require any disruptive
overt response from the operator. Thus, they are particularly suit-
able as indicators of operator workload in adaptive systems (Byrne
and Parasuraman, 1996; Hancock and Chignell, 1987, 1988). Despite
these advantages, physiological assessments also have limitations
(Cain, 2007). Depending on the measure, these may include lower
sensitivity to task demands relative to subjective scales, or sensi-
tivity to certain characteristics of taskload only. Measures may also
be contaminated by general stress responses. Conceptual linkages
from physiology to performance may also be insufficiently speci-
fied. Nevertheless, developments in recording and processing
physiological signals, together with accumulating evidence for
validity, have heightened interest in the physiological approach
(e.g., Chen and Barnes, 2014).

The basis of physiological workload measures (e.g., heart-rate,
ocular activity, brain activity, hemodynamics) lies in the notion
that, with the activation of various cognitive processes required to
process task demands and execute the required responses, there
are correspondng physiological responses. Commonly-used mea-
sures include heart rate, heart rate variability, respiration rate, brain
activity, pupil size (diameter), and electrodermal activity, among
many others. Rationales for specific measures may be found in re-
views by Abich (2013), Borghini et al. (2014), Warm et al. (2012),
Meshkati et al. (1995), and Young et al. (2015). For the present
study, the physiological workload measures selected address re-
sponses in both central (i.e., brain activity, cerebral perfusion as
indicated by level of oxygen saturation, and cerebral bloodflow
velocity) and peripheral responses (i.e., cardiac and ocular re-
sponses) that index such cognitive activity.

1.2. Development of a workload model that accommodates
individual variability in physiological responses

A challenge for ergonomic applications is the complexity of the
neuropsychological workload construct (e.g., Young et al., 2015).
Different metrics for workload may dissociate from one another,
and from performance as task demands change (Hancock and

Scallen, 1996; Horrey et al., 2009; Szalma and Teo, 2012). In the
adaptive aiding context, it is essential to distinguish (1) objective
external task demands (which we call “taskload”), (2) objective
performance, and (3) workload as subjective and physiological in-
dicators reflective of operator neurocognitive state. In some cir-
cumstances, loss of performance may be used to drive an
automated aid directly, without the need for workload assessment.
By contrast, use of workload rather than performance as the driver
may be more effective in contexts in which (1) it is difficult to
monitor performance continuously, (2) performance is influenced
by multiple factors, and/or (3) it is important to anticipate future
performance degradation as initial compensation for high task load
becomes increasingly difficult (Cain, 2007; Hancock and Warm,
1989).

However, workload-driven adaptive aiding will only be effective
if there is a negative taskload e performance association, so that
mitigating taskload enhances performance. There are several cir-
cumstances in which taskload dissociates from performance. At
moderate levels of demand, people often compensate for changing
taskload levels to maintain constant performance, although low
workload appears to be especially hard to manage (Hancock and
Warm, 1989; Saxby et al., 2013) and may contribute to loss of sit-
uation awareness (Young and Stanton, 2007). Indeed, workload
may reflect the operator's strategies for active management of task
demands, strategies that may change dynamically during the
course of performance (Hockey, 1997; Saxby et al., 2013). Especially
in real-life settings, high workload may be experienced as enjoy-
ably challenging and motivating (Matthews, 2016), potentially
leading to positive workload-performance associations (Abich
et al., 2017). Thus, workload is primarily useful for driving aiding
or other automation in task settings that produce congruent re-
actions indicative of overload: subjective workload and stress, little
strategic compensation, and performance impairment.

Evenwithin the subset of task environments in which workload
is diagnostic of performance, there are assessment challenges, e.g.,
different workload measures do not always concur. Workload may
be assessed with subjective scales such as the NASA-TLX (Hart and
Staveland, 1988), but such measures do not adequately capture
physiological response (Matthews et al., 2015). Different forms of
taskload, such as working memory demands, multi-tasking, and
signal salience may all provoke feelings of overload. However,
different taskload factors may elicit different patterns of physio-
logical responses so that an algorithm based on responses to
increasing working memory demands, for example, might not be
effective in driving an adaptive system for handling multi-tasking.

A further major challenge associated with the use of physio-
logical workload measures involves the large inter-individual
variability of such responses (e.g. Hancock et al., 1985; Moray,
1984; Meshkati and Loewenthal, 1988; Roscoe, 1993; Johannes
and Gaillard, 2014). There are multiple, weakly-correlated work-
load responses associated with indices of autonomic and central
nervous sytem functioning. For example, one individual might
show a strong electroencephalographic (EEG) response but a weak
electrocardiac response, whereas another person might show the
opposite pattern (Matthews et al., 2015). The workload model
driving the closed-loop system would need to accommodate this
inter-individual variability in physiological responses to workload
across multiple measures in order to be fully effective.

The present study used a task environment represented by a
simulation of an unmanned vehicle operation. This met the criteria
we have defined for application of workload-driven adaptive aid-
ing. The participant monitored one or more computer-screen
windows for critical signals. The task imposed relatively high
event rates to make the task attentionally demanding and limit
possible strategic compensation. Taskloads are not so low as to
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