
ARTICLE IN PRESS 

JID: INFSOF [m5G; July 8, 2017;23:47 ] 

Information and Software Technology 0 0 0 (2017) 1–13 

Contents lists available at ScienceDirect 

Information and Software Technology 

journal homepage: www.elsevier.com/locate/infsof 

Which type of metrics are useful to deal with class imbalance in 

software defect prediction? 

Muhammed Maruf Öztürk 

Department of Computer Engineering, Engineering Faculty, Suleyman Demirel University, Isparta, Turkey 

a r t i c l e i n f o 

Article history: 

Received 25 May 2016 

Revised 29 June 2017 

Accepted 4 July 2017 

Available online xxx 

Keywords: 

Static code metrics 

Process metrics 

Class imbalance 

Defect prediction 

a b s t r a c t 

Context: There are various ways to cope with class imbalance problem which is one of the main issues 

of software defect prediction. Sampling algorithms are implemented on both industrial and open-source 

software defect prediction data sets by practitioners to wipe out imbalanced data points. Sampling algo- 

rithms, up-to-date, have been employed either static or process code metrics. 

Objective: In this study, sampling algorithms including Virtual, SMOTE, and HSDD (hybrid sampling for 

defect data sets) are explored using static code and quality metrics together. Our goal is not only to lead 

practitioners to decide the type of the metrics in defect prediction but also provide useful information 

for developers to design less defective software projects. 

Method: We ran sampling experiments with three sampling algorithms on ten data sets (from GitHub). 

Feature selection is applied on large features of the data sets. Using five classifiers, the performance of 

the data sets after sampling is compared with initial data sets. Regression analyzes are implemented on 

quality metrics to find the most influential metrics for detecting defect proneness. 

Results: Regardless of the type of the sampling, prediction performances are similar. Quality metrics sur- 

passed static code metrics with respect to training times and prediction accuracies. 

Conclusion: Using quality metrics yields better prediction results rather than static code metrics in im- 

balanced data sets. As the count of project cloning increases, the number of defects decreases. Thus, 

approaches, related to the class imbalance, should be evaluated not only in terms of static code metrics 

but also for quality metrics. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Verification and validation of a software is critical to plan al- 

located budget to development [1] . However, software systems 

require many effort s to be validated. In order to validate soft- 

ware systems, software defect prediction (SDP) is a way to check 

whether they are validated. Prediction of defective parts of a soft- 

ware facilitates planning of the software development budget in 

SDP. SDP is twofold. First is the process which is conducted using 

historical data to predict future defects. The second is the predic- 

tion of the remaining defects. SDP is conducted considering some 

properties of defect data sets of software systems. 

Some researchers strongly advise the use of static code metrics 

[2–5] in SDP. Prediction models employing these metrics include 

statistical methods and machine learning. Here, the main objec- 

tive is to find the metrics of which is far more correlated with 

defect-proneness than the others. Fuzzy rules help practitioners to 

extract new biases from static code metrics [6] . In recent years, 

E-mail address: muhammedozturk@sdu.edu.tr 

it has shown that process metrics giving information about soft- 

ware processes yield better prediction results than static code met- 

rics [7–12] . Therefore, static code metrics should be compared with 

process metrics in every SDP issue. 

One of the issues of SDP is class imbalance and it has also been 

the focus of SDP in recent years. It is the main factor of causing 

poor performance on SDP data sets. This occurs when defective 

or not defective samples outnumber the others. Class imbalance 

learning aims to deal with this problem. It presents either data or 

algorithm focused solutions. Feature selection, ensemble methods, 

and sampling techniques are applied on data sets to handle with 

class imbalance. In order to overcome this problem, some methods 

have been developed so far [13–15] , but there is not any compar- 

ison work in literature in terms of static code and process met- 

rics. For instance, Wang et al. investigated class imbalance learn- 

ing methods on the data sets having static code metrics [13] . Like- 

wise, there are some works performed with publicly available data 

sets having static code metrics [16–18] . On the other hand, there 

are few works comparing static code and process metrics with re- 

gard to the predictive performance. One of them is Rahman and 

http://dx.doi.org/10.1016/j.infsof.2017.07.004 

0950-5849/© 2017 Elsevier B.V. All rights reserved. 

Please cite this article as: M.M. Öztürk, Which type of metrics are useful to deal with class imbalance in software defect prediction? 

Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.07.004 

http://dx.doi.org/10.1016/j.infsof.2017.07.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/infsof
mailto:muhammedozturk@sdu.edu.tr
http://dx.doi.org/10.1016/j.infsof.2017.07.004
http://dx.doi.org/10.1016/j.infsof.2017.07.004


2 M.M. Öztürk / Information and Software Technology 0 0 0 (2017) 1–13 

ARTICLE IN PRESS 

JID: INFSOF [m5G; July 8, 2017;23:47 ] 

Fig. 1. Main steps in our work. 

Devanbu’s work [12] in which process and static code metrics were 

compared with 12 real-world data sets. They conducted the exper- 

iment to reveal which type of metrics is likely to evolve in the 

changing distribution of defects. However, they did not present any 

findings about the strength of the type of metrics in handling with 

class imbalance. 

This work investigates which type of metrics is useful in class 

imbalance learning methods. We focus on these research ques- 

tions: Which type of process metrics are linearly correlated with 

defect count? Are static code metrics preferable in predicting de- 

fects for every experimental condition including class imbalance? 

Are sampling methods quite different in terms of prediction results 

and which sampling method is preferable in coping with class im- 

balance? Do clustering give tips for researchers during defect pre- 

diction simulation? 

In order to answer the questions, we discuss the results of 

sampling methods used in class imbalance problem with regard 

to static code and quality metrics. The performance of the classi- 

fiers including LIBSVM, Bayes, naive bayes, random forest, and J48 

were recorded before the pre-processing in the experiment. We 

then completed feature selection, clustering and sampling using 

HSDD [19] , SMOTE [20] , and Virtual [21] . Finally, the performance 

of the classifiers were re-measured and recorded to compare with 

the pre-processing manner. Experimental data sets have static code 

and process (quality) metrics. Main steps of our study are seen in 

Fig. 1 . The study consists of three phases. Each of the phases is de- 

tailed in the following subsections. The contribution and novelty of 

the paper can be summarized as follows: 

1. Correlation between quality metrics and the number of defects 

is investigated. 

2. Static code metrics and process metrics are compared in terms 

of area under the curve (AUC) on both industrial and open- 

source projects using four predictors. 

3. It is investigated which type of metric yields remarkable suc- 

cess if class imbalance is addressed with sampling algorithms. 

4. Common sampling algorithms are compared with both static 

code and quality metrics to determine the churn of prediction 

success. 

5. Clustering structures of defect prediction data sets are explored 

to detect whether clusters of defect prediction data sets give 

tips for performance parameters such as AUC and g-mean. 

The rest of the paper is organized as follows: The works corre- 

spond to ours are presented in Section 2 and the difference of our 

work from these works is also stressed in this section. The notions 

and the definitions are presented in Section 3 . Section 4 details the 

method. Experimental design is in Section 5 . Last, we conclude in 

Section 6 and discuss future works. 

2. Literature review 

The main purpose of this section is to give information about 

the works related to the process metrics. In addition, we intend 

to show the need of a class imbalance comparison work including 

static code and process metrics together. 

Rahman and Devanbu [12] compared static code metrics with 

process metrics by investigating 12 project data sets and they de- 

picted that static code metrics are stagnant in prediction perfor- 

mance. Performance parameters AUC and F -measure were used 

in the comparison. The experimental data retrieved from GitHub 

include 14 different process metrics. Moreover, they gathered 37 

static code metrics for each project. The experiment, performed us- 

ing four classifiers including logistic regression, LIBSVM, J48, and 

naive bayes, showed that prediction performance does not evolve 

using static code metrics. However, this study did not evaluated 

class imbalance in terms of static code and process metrics to- 

gether. 

Kaur et al. compared static code metrics with process metrics in 

mobile applications. The prediction performed using process met- 

rics yielded better results than static code metrics [7] . Madeyski ve 

Jureczko [8] investigated process metrics in industrial and open- 

source projects. The main objective of this work is to find the 

correlation between process metrics and defect-proneness. Predic- 

tion models having 12 different projects including “number of dis- 

tinct committers” and “number of modified lines” metrics pro- 

duced good results. Additionally, the method is best in metrics ex- 

tracted from recently changed codes. 

Foucault et al. investigated ownership metrics and software 

quality in open-source projects. One of the results of this work is 

that simple metrics performs better. In this work, it is ambiguous 

that how the methods employed for class imbalance problem be- 

have in data sets including ownership metrics [10] . 

McIntosh et al. [22] stressed that code review metrics are very 

effective in software quality. Their study, that includes 14 process 

metrics, did not explore the impact of process metrics in class im- 

balance. 

In another work [11] , which is related to how process metrics 

should be collected and analyzed, a new software evaluation model 

is developed. Evaluating historical processes, the model adds new 

process metrics to the evaluation structure. Thus, the aim of this 

operation is that it helps practitioners to interpret process tables 

and develop software system. Bird et al. [23] investigated the corre- 

lation between defectiveness and ownership metrics. In the exper- 

iment, which was performed using two versions of Windows op- 

erating system, it was concluded that as the level of ownership of 

a software system increases, the number of total defects decreases. 

However, it was remained unclear how the ownership metrics af- 

fect the success of the prediction. Another work [24] having simi- 

lar results examined comment and ownership metrics on four data 

sets. It could not decide whether recall or precision outperforms 

the other. 

It is also possible to make foresight about software quality us- 

ing linear models on process metrics [25] . But, applied models 

should be changed depending on the type of the project and de- 

veloper teams. Weyuker et al. [26] investigated the correlation be- 

tween developer metrics and the success of the SDP. One of the 

findings of this work is that it is not suitable to apply one model 

to various software systems. Because it is desired to use histor- 

ical data of project teams while predicting defects. The number 

of developer is not the main factor affecting the ratio of defects 

Please cite this article as: M.M. Öztürk, Which type of metrics are useful to deal with class imbalance in software defect prediction? 

Information and Software Technology (2017), http://dx.doi.org/10.1016/j.infsof.2017.07.004 

http://dx.doi.org/10.1016/j.infsof.2017.07.004


Download English Version:

https://daneshyari.com/en/article/4972205

Download Persian Version:

https://daneshyari.com/article/4972205

Daneshyari.com

https://daneshyari.com/en/article/4972205
https://daneshyari.com/article/4972205
https://daneshyari.com

