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a b s t r a c t 

The advances in graphs play an important role to understand interrelated data. Inside graphs, there are 

usually community structures where different portion of nodes are more tightly connected to form a 

group, and community detection has wide applications in marketing, management, health care, and ed- 

ucation. Nowadays, many different methods are proposed to detect community structures from different 

perspective, but none of them can be a constant winner. Therefore, ensemble different methods can po- 

tentially improve the final result. In this paper, we present a framework for different methods to be com- 

bined for community detection, and experimental results show our framework can potentially generate a 

better result by different methods collectively than any single method. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction and related work 

Nowadays, with the development of data collection techniques, 

it is much easier for us to collect interrelated data from different 

perspectives. Such interrelated data can be represented as a graph 

data structure consisting of a set of nodes together with edges 

among them. These complex graphs represent systems of interac- 

tions in industrial information integration [1] , biology [2] , social 

sciences [3] , healthcare [4] , and business [5] . One important char- 

acteristics of graphs is that it has many different communities in- 

side. Those communities represent different functional components 

in a graph. Communities in different types of graphs from different 

functional meanings. In industrial information integration, we have 

group of companies collaborating with each other for a certain 

product or service. In social network, we have organizations such 

as colleagues, friends, cities, and religious groups. In WWW, they 

represents different topics of webpages. Usually, nodes in these 

graphs are not randomly connected with each other, and they are 

more likely to interact with nodes from the same community. For 

example, industrial companies need to collaborate with each other 

in the same supply chain to produce products. Proteins in biology 

interact with each other to achieve a certain function. Searching 

for community structures from graphs has many meaningful 

applications. In industrial information integration [1] , community 

detection will help us to narrow down the focus and find the 

potential partners and competitors in industrial groups. In biology, 

community detection can be used to find pathways of inherited 
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diseases. In addition, it can be used for word-of-mouth marketing, 

customer segmentation, and influential person identification. 

Most community detection methods is to find the partition 

that has the highest objective value through combinatorial op- 

timization. Although the research in community detection can 

be traced back to 1955 where the working relationships in a 

government agency [6] is studied, it remains an active research 

topic for three major issues. First, the objective function cannot 

perfectly match the underlying community structure for various 

graphs. For example, some well-known objective functions pro- 

duce intuitively wrong results for resolution limit or degeneracy 

[7] . Therefore, many different objective functions, such as density, 

modularity, and conductance, are proposed and none of them 

can be a constant winner. Second, the potential search space is 

a Bell number. This number will increase exponentially with the 

number of nodes in the graph. Even for a very small network with 

20 nodes, its search space has 5 . 17 E + 13 possible combinations. 

With the development of information techniques, computers and 

electronic devices can easily collect the interaction in a real graph 

with millions or billions of nodes, such as Facebook, company 

transaction through the SWIFT international payment network, 

and protein interaction network. Since it is impossible to get the 

optimal partition by the brute-force method for network with 

more than hundreds of nodes, different heuristic methods, such as 

greedy search [8] , simulated annealing [9] , extremal optimization 

[10] , and local search [11] , are proposed to find a sub-optimal 

partition. Three, the performance evaluation of different methods 

are based on the comparison between the detected communi- 

ties and the “latent-truth” communities. However, the so-called 

“latent-truth” communities for any real life graphs have errors in 

it. For a small-size graph, the so-called “latent-truth” communities 
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Fig. 1. A sample graph. 

is usually identified by the person with a good understanding of 

the entire graph. For a large-size graph, the so-called “latent-truth”

communities is usually identified according to different persons 

based on their understanding on different portions of the graph. 

Since the golden standard to compare is problematic, it is possible 

to sign a low score to a good method. 

Because of various issues in community detection, we make 

several improvement to get better results. First, because differ- 

ent objective functions might be better for different graphs, we 

present a framework for different methods to be combined for 

community detection. Such combination will make our method to 

be more robust to different graphs. Second, we utilize a simulated 

graph procedure for evaluation purposes as the latent-truth in 

simulated graphs are genuine latent-truth. 

2. Our method 

In this paper, we proposed a framework for different methods 

to be combined for community detection. Before introducing our 

framework, we first introduce the two objective functions that 

have been selected for combination. 

Given a graph G with n nodes and m edges, if the current par- 

tition P is { C 1 , C 2 , . . . , C p } , we can calculate the modularity [8] for 

each community C l as follows. A sample graph shown in Fig. 1 is 

used to understand how the modularity is calculated. The sample 

graph has 7 nodes and 10 edges, and the current partition has two 

groups: C 1 = { 1 , 2 , 3 } and C 2 = { 4 , 5 , 6 , 7 } . If an edge is randomly 

selected from the graph G , the probability for the selected edge 

with both ends in C l is 

∑ 

v i ∈ C l k 
internal 
v i 

2 ∗m 

where k internal 
v i is the number of 

internal edges for the node v i . Take C 1 in the sample graph for ex- 

ample. It has three nodes: 1, 2, and 3. Both node 1 and node 2 have 

two internal edges and no external edges, while node 3 has two in- 

ternal edges and one external edge. Therefore, k internal 
v 1 + k internal 

v 2 + 

k internal 
v 3 = 6 . In this formula, each internal edge in C 1 is counted 

twice. Therefore, 6 / (2 ∗ 10) = 0 . 3 is the probability of a randomly 

selected edge to be the internal edge in C 1 . Similarly, if an edge 

is randomly selected from the graph G , the probability for the se- 

lected edge with at least one end in C l is 

∑ 

v i ∈ C l k v i 
2 ∗m 

where k v i is the 

number of edges for the node v i . For C 1 in the sample graph, the 

related probability is (2 + 2 + 3) / (2 ∗ 10) = 0 . 35 .If an edge with 

one end in C l has nothing to do with the other end in C l , the ex- 

pected probability for a randomly selected edge with both ends 

in C l is 

∑ 

v i ∈ C l k v i 
2 ∗m 

∗
∑ 

v j ∈ C l k v j 
2 ∗m 

. For C 1 in the sample graph, the related 

probability is 0 . 35 ∗ 0 . 35 = 0 . 1225 If the nodes in community C l are 

randomly selected, we are expecting that 

∑ 

v i ∈ C l k 
internal 
v i 

2 ∗m 

will be very 

close to 

∑ 

v i ∈ C l k v i 
2 ∗m 

∗
∑ 

v j ∈ C l k v j 
2 ∗m 

. If two numbers are very different from 

each other, it is problematic for the assumption that a randomly 

selected edge with one end in C l has nothing to do with the other 

end in C l . In our example, the actual probability is 0.3 and the ex- 

pected probability is 0.1225. Because these two numbers are very 

different, we believe the group C 1 is not randomly selected and 

likely to be a community in the sample graph. For a modularity 

based method [8] , it tries to find the community with the highest 

difference between 

∑ 

v i ∈ C l k 
internal 
v i 

2 ∗m 

and 

∑ 

v i ∈ C l k v i 
2 ∗m 

∗
∑ 

v j ∈ C l k v j 
2 ∗m 

. 

Another method we select is a likelihood ratio based method 

[12] . In the community C l , the total number of internal edges is 
∑ 

v i ∈ C l k 
internal 
v i 

2 . If the probability of a randomly selected edge inside 

the community C l is p C l , then likelihood for us to get a graph with 

∑ 

v i ∈ C l k 
internal 
v i 

2 edges inside the community C l follow the binomial 

distribution: P r(C l ) = B ( 

∑ 

v i ∈ C l k 
internal 
v i 

2 ; m, p C l ) . If we assume an edge 

with one end in C l has nothing to do with the other end in C l , then 

p C l = 

∑ 

v i ∈ C l k v i 
2 ∗m 

∗
∑ 

v j ∈ C l k v j 
2 ∗m 

and the likelihood of getting our graph 

under the assumption is P r(C l ) null = B ( 

∑ 

v i ∈ C l k 
internal 
v i 

2 ; m, 

∑ 

v i ∈ C l k v i 
2 ∗m 

∗
∑ 

v j ∈ C l k v j 
2 ∗m 

) . In reality, the observed chance for a randomly selected 

edge inside the community C l is 

∑ 

v i ∈ C l k 
internal 
v i 

2 ∗m 

. Therefore, the like- 

lihood of getting our graph based on the unbiased estimator is 

P r(C l ) observ ed = B ( 

∑ 

v i ∈ C l k 
internal 
v i 

2 ; m, 

∑ 

v i ∈ C l k 
internal 
v i 

2 ∗m 

) . Finally, the likeli- 

hood ratio between the estimation from observed data and the 

estimation from null hypothesis is 
Pr(C l ) observ ed 

Pr(C l ) null 
. 

With the two methods we selected, we test several different 

ensemble methods. In order to make our study focused, we rule 

out the impact of different heuristic search procedure, and select 

greedy search, the simplest search method. In the beginning, each 

node form its own community, and then the most promising 

pair will be iteratively merged in each round. Because different 

objective functions will favor different pairs, an ensemble method 

will be promising when different methods can reveal the latent 

truth from different perspectives. In addition, the original value 

of different objective functions will change in different scales. 

Therefore, we ensemble the ranking position of each method 

instead of their original values. We tested three different ensemble 

function for the ranking list: product, sum, and min. For example, 

if the ranking of the potential merge MR i by the method MT j is 

R i, j . If the ensemble method is product, the value of the potential 

merge MR i is 
∏ n 

j=1 R i, j . 

Fig. 2 shows how the ranking in different ensemble methods 

impact the choice of merge in each round through their hyper- 

plane. Take Fig. 2 (a) for example. The x-axis is the rank in the 

first method, and the y-axis is the rank in the second method. 

Any point in the same curve has the same product value. The 

product ensemble method will not favor one point over the other 

point if both are in the same curve. According to the shape of the 

curve, one point is more likely to be favored if its ranking in either 

method is close to 1. In other words, the product ensemble method 

will favor the merge as long as its ranking in one method is close 

to 1. The ranking in the other method only have marginal impact. 

For the sum ensemble method, the ranking in either method has 

equal impacts. Therefore, this method will highlight the merge 

that has low ranking values in both methods. For the min ensem- 

ble method, only the lower ranking value between both methods 

is relevant, and the other higher ranking value has no impact. As 

discussed in the previous paragraph, different objective functions 

will favor different pairs and reveal the latent truth from different 
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