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a  b  s  t  r  a  c  t

This  paper  presents  an  individualized  model  predictive  control  (MPC)  algorithm  for  overnight  blood
glucose  stabilization  in  people  with  type  1 diabetes  (T1D).  The  MPC  formulation  uses  an  asymmetric
objective  function  that  penalizes  low  glucose  levels  more  heavily.  We  compute  the  model  parameters  in
the MPC  in  a systematic  way  based  on  a priori  available  patient  information.  The  model  used  by the  MPC
algorithm  for  filtering  and prediction  is an  autoregressive  integrated  moving  average  with  exogenous
input  (ARIMAX)  model  implemented  as  a linear  state  space  model  in innovation  form.  The  control  algo-
rithm  uses  frequent  glucose  measurements  from  a continuous  glucose  monitor  (CGM)  and  its  decisions
are  implemented  by a continuous  subcutaneous  insulin  infusion  (CSII)  pump.  We  provide  guidelines  for
tuning  the  control  algorithm  and  computing  the  Kalman  gain  in the  linear  state  space model  in  innovation
form.  We  test  the controller  on a cohort  of  100  randomly  generated  virtual  patients  with  a representative
inter-subject  variability.  We  use the  same  control  algorithm  for  a feasibility  overnight  study  using 5  real
patients.  In  this  study,  we  compare  the  performance  of  this  control  algorithm  with  the  patient’s  usual
pump  setting.  We  discuss  the  results  of  the  numerical  simulations  and  the in  vivo clinical study  from  a
control  engineering  perspective.  The  results  demonstrate  that  the  proposed  control  strategy  increases
the  time  spent  in  euglycemia.

© 2017  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Patients with type 1 diabetes (T1D) need frequent exogenous
insulin administration to tightly regulate their blood glucose. How-
ever, the dosage of insulin must be done carefully. An insulin
overdose may  lead to low blood glucose (hypoglycemia), which
has immediate effects, such as severe discomfort, seizures, coma or
even death. In contrast, prolonged periods of too high blood glu-
cose (hyperglycemia) has long-term clinical complications, such as
blindness, nerve diseases, kidney or cardiovascular diseases.

An increasing number of patients with T1D use an insulin ther-
apy based on continuous glucose monitors (CGMs) and continuous
subcutaneous insulin infusion (CSII) pumps instead of multiple
daily insulin injections (MDI). CGMs provide more frequent subcu-
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taneous (sc) glucose measurements than self-monitoring of blood
glucose (SMBG). Insulin pumps can be adjusted to accommodate
intraday variations in insulin needs. This sensor-augmented ther-
apy combined with a CSII pump can reduce the risk of hypoglycemia
and clinical complications [1–3], but yet only a minority of CGMs
and CSII users can regulate their glucose tightly [4].

Closed-loop control of blood glucose, also known as the artifi-
cial pancreas (AP), has the potential to improve glucose regulation
and to reduce the burden of deciding on the insulin amount to be
infused. The AP uses the sc-sc route for glucose sensing and insulin
administration and is a very active topic of research [5–8].

The fear of nocturnal hypoglycemia is one of the main concerns
for people with T1D. As a consequence, most of the people with T1D
do not meet the hemoglobin A1c (HbA1c) levels recommended by
the American Diabetes Association [9]. Currently, insulin pumps
with insulin suspension in case of predicted low blood glucose
levels are being used to reduce the risk of hypoglycemia with
promising results [10,11]. Moreover, A number of recent clinical
studies have focused on overnight prevention of hypoglycemia and
closed-loop control of blood glucose [12–18]. Improving overnight
glucose regulation also has a positive impact on post-breakfast glu-
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cose regulation [19]. Some other clinical studies illustrated the use
of an AP for day and night glucose regulation in T1D and demon-
strated the feasibility of fully closed-loop AP algorithms [20–27]. A
database of all the clinical trials is also available [28].

Nevertheless, the performance of current APs is limited by
several factors. The main limiting factors are the intra- and inter-
patient variability in the patient physiology and the lags and delays
associated to the choice of the sc route for insulin administration
[29,30,6,31]. The lag of current CGMs is not a major impediment
when used is a closed-loop control system, and current CGMs are
sufficiently accurate under normal calibration to correctly detect
hypo- and hyperglycemia [32,33].

Model predictive control (MPC) is one of the most commonly
used methods for the AP. One of the main advantages of MPC
is the ability to handle constraints on input (the insulin infusion
rate) and output (the CGM readings) variables in a systematic and
straightforward way. Control algorithms based on nonlinear MPC
(NMPC) have been tested [34–36]. These algorithms give an insight
about the maximum achievable performance and usually result in a
tighter glucose regulation than control algorithms based on linear
MPC. The optimal control problems arising in NMPC-based algo-
rithms can be solved in the range of micro- to milliseconds [37,38].
Nevertheless, NMPC-based algorithms may  be challenging to tune
and to personalize in a systematic way for glucose regulation in T1D
[39,40]. Consequently, easy to tune control algorithms based on lin-
ear MPC  are preferred. A convenient way to tune such a controller
is to use patient information that are already accessible, such as
the body weight, the total daily insulin dose, the basal insulin and
the insulin sensitivity factor [41,42,13]. Adaptive tuning of linear
MPC-based controllers has also been proposed [43].

In this paper, we present an AP using a CGM for glucose feed-
back, an insulin pump, and a control algorithm based on MPC. The
AP described in this article is individualized using a priori available
patient information. In the considered setup, the patient informa-
tion required by the controller is: The basal insulin infusion rate,
the insulin sensitivity factor (also called the correction factor), and
the insulin action time. The controller is tested in silico on a cohort
of 100 patients. These simulations mimic  an overnight clinical trial
and induce realistic variations in insulin needs. This paper discusses
the implementation of our control algorithm [44] on real patients
during an overnight clinical study [12].

This paper is organized as follows. In Section 2, we describe
the model and the methods used to simulate a cohort of patients
with T1D and noise-corrupted CGM measurements. In Section 3,
we present the clinical protocol. Section 4 presents the procedure
for computation of the personalized set of MPC  model parameters
using prior patient information. Section 5 states the optimal control
problem solved at each time sample. An asymmetric cost function
and other safety layers reduce the risk of hypoglycemia. In Sec-
tion 6, we evaluate and discuss the controller performance using a
cohort of 100 virtual patients. Section 7 presents the results of the
controller applied to a clinical study. Conclusions are provided in
Section 8.

2. Physiological models for people with T1D

Several physiological models have been developed to simulate
virtual patients with T1D [34,45,46]. They describe subcutaneous
insulin transport, intake of carbohydrates through meals, and
include a model of glucose-insulin dynamics. Models simulating
glucose transport from plasma to interstitial glucose and CGM noise
have been developed [47–49]. Simulation environments for T1D
have also been developed [50–52].

In this paper, we use the model developed by Hovorka et al. [34].
Based on the parameters and distributions provided in [29,51,53],

Table 1
Parameters and distribution for the simulated cohort [51,53].

Parameter Unit Distribution

EGP0 mmol/kg/min EGP0 ∼ N(0.0161, 0. 00392)
F01 mmol/kg/min F01 ∼ N(0.0097, 0. 00222)
k12 min−1 k12 ∼ N(0.0649, 0. 02822)
ka1 min−1 ka1 ∼ N(0.0055, 0. 00562)
ka2 min−1 ka2 ∼ N(0.0683, 0. 05072)
ka3 min−1 ka3 ∼ N(0.0304, 0. 02352)
Sf

IT
min−1/(mU/L) Sf

IT
∼N(51.2, 32.092)

Sf
ID

min−1/(mU/L) Sf
ID

∼N(8.2, 7.842)
Sf

IE
L/mU Sf

IE
∼N(520, 306.22)

ke min−1 ke ∼ N(0.14, 0. 0352)
VI L/kg VI ∼ N(0.12, 0. 0122)
VG L/kg ln(VG) ∼ N(ln(0.15), 0. 232)
�I min 1

�I
∼N(0.018, 0.00452)

�G min ln
(

1
�G

)
∼N(−3.689, 0.252)

Ag Unitless Ag ∼ U(0.7, 1.2)
BW  kg BW ∼ U(65, 95)

Table 2
Parameters for the CGM model [47].

Parameter Value Unit

�sub 15 min
�  15.96 mg/dL
�  −5.471 mg/dL
ı  1.6898 –
�  −0.5444 –

we generate a cohort of 100 virtual patients. These parameters
and their distribution are summarized in Table 1. We  augment
the model with the CGM model developed by Breton et al. [47].
Compared to an approach using an already available simulation
environment, this method allows to generate an unlimited number
of virtual patients following a normal distribution, and provides a
full access to all the states and the parameters of the system.

2.1. CGM model

We  use a CGM for glucose feedback in our controller setup. For
the numerical simulations, we  generate noisy CGM data based on
the model and the parameters stated in [47]. This model consists of
two parts. The first part describes the glucose transport from blood
to interstitial tissues, which is

dGsub

dt
= 1

�sub
(G(t) − Gsub(t)) . (1)

Gsub(t) is the subcutaneous glucose and G(t) is the blood glucose.
�sub is the time constant associated to glucose transport from blood
to subcutaneous tissues.

The second part models non-Gaussian sensor noise. It is given
by{

e1 = v1,

ek = 0.7(ek−1 + vn),
(2a)

vk∼Niid(0,  1),  (2b)

�k = � + � sinh
(

ek − �

ı

)
. (2c)

Consequently, the glucose value returned by the CGM is

GCGM(tk) = Gsub(tk) + �k. (3)

Table 2 provides the numerical values used in our CGM model.
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