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In modern communication network such as a public Internet, random losses of information can be 
recovered by frame expansions. In this paper, we think about the transport protocol that delivers a 
coefficient of frame expansions with some probability of failure via multiple intermediate nodes. By 
this protocol, we abstract the transmission as a Markov process. In this case, even if the probabilities 
of erasures are close to the 1/2, we show that the reconstruction error can be minimized as small 
as possible by using frames with high redundancy. Furthermore, we set up a probability model for 
constructing optimal Parseval frames that are robust to one probabilistic erasure. It is shown that 
probabilistic modeled Parseval frames are more effective than traditional Parseval frames on recovering 
the signal with probabilistic erasures.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Frame, a redundant set of vectors in Hilbert space, was first in-
troduced by Duffin and Schaeffer in the context of nonharmonic 
Fourier series [1]. Compared to orthonormal bases, frames allow 
redundancy which is desirable in signal transmission for construct-
ing signals when some coefficients are lost. Redundancy is one of 
the key features of frames that is important for applications. First, 
redundancy can provide us the flexibility for constructing frames 
that fit a particular problem in a manner not possible by a set of 
linearly independent vectors. The second advantage of redundancy 
is robustness. For example in the case that some of the coefficients 
of the encoded signal vectors have been intermittently faded out or 
lost (erased) in a transmission process, the redundancy of a frame 
used for coding can achieve resilience against losses (erasures) 
or noises. Hence, in contrast to orthonormal bases, frames can 
provide perfect reconstruction (or with much smaller reconstruc-
tion errors) of the signal from its erasure-corrupted data. Recently, 
frame theory and its applications have become an active area of 
research in both mathematics and engineering such as wireless 
communications [2], sampling theory [3], coding theory [4], filter 
bank [5] and image processing [6].

In a signal communication system, one can view this commu-
nication scheme with frame expansions as follows (see Fig. 1). 
The original signal is viewed as a vector f ∈ R

n . This vector is 
represented by its m ≥ n expansion coefficients with respect to 
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some given frames. These coefficients are sent through many mul-
tiple intermediate nodes. In this transmission process, erasures of 
expansion coefficients maybe arise from buffer overflows at the in-
termediate routers, or from global conditions in the network such 
as congestion, transmitted power. In this case, we may abstract 
the behavior of the network as delivering a coefficient with some 
probabilistic regularity of failure [7]. For instance, the probabilistic 
of bad channel failure is usually larger than the probability of good 
channel failure, or probability of erasure tends to increase with 
transmission time. In this case, the second author of this paper 
and other authors inset different weights for the expansion coeffi-
cients according to their degree of loss possibility. And they found 
optimal dual frames or optimal Parseval frames that will minimize 
the decoding errors when probabilistic erasures occur [8,9].

Compared to basis representation, a frame expansion can be a 
useful representation even when some frame coefficients are lost 
with some probabilistic regularity in transmission because proper 
subsets of frames are sometimes themselves frames. For exam-
ple, it is not necessary to use all the coefficients to reconstruct 
the signal. A subset of the coefficients is sufficient to represent 
the signal as long as the corresponding frame elements still span 
the space. In this case, perfect reconstruction is possible, making 
the representation robust to probabilistic erasures during transmis-
sion. More importantly, authors of [9] showed that it is allowed to 
construct various frames in a flexible way for different application 
scenarios. For example, in a wireless relay network, every encoded 
data is delivered from one node to another. Due to the influence of 
external environments, the data is delivered with some probability 
of failure. When the loss probability of the data is obviously larger 
than that of the others, one can construct corresponding Parseval 
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Fig. 1. The modern transmission model of a communication system using redundant signal expansion.

frames which are robust to probabilistic erasures. It is shown that 
this kind of Parseval frames perform better than traditional Parse-
val frames on recovering signals with erasures.

Based on above work, in this paper, we continue to study the 
work of minimizing the maximal error when the probabilistic era-
sures occur. We first analyze the transmission process and view it 
as a Markov process. Then we obtain the erasure probabilities of 
coefficients by a Markov transition matrix. We prove that there ex-
ists a frame which can recover the signal with a high degree of 
accuracy even if the erasure probabilities of coefficients are close 
to the 1/2. Then we define a new sequence of weights which is 
different from the one of [9]. We study the properties of weights 
which we have defined. It is shown that there exists a Parseval 
frame with the norm associated with weights, and we prove that 
this Parseval frame is optimal robust to probabilistic erasure. We 
remark that we neglect the quantization and other interference in 
this paper.

The paper is organized as follows. We recall some notations of 
frame theory and the process of frame expansion for coding in 
Section 2. In Section 3, we model the transmission of expansion 
coefficients as a Markov process. We prove that the error of the re-
constructed signal can be minimized as small as possible by using 
a uniform tight frame, even if the each erasure probability of the 
coefficient is close to the 1/2. Section 4 is devoted to studying the 
weights which are defined by probabilities of erasures. It is shown 
that there exists a Parseval frame with norm associated with these 
weights. We call this Parseval frame a probabilistic modeled (PM) 
Parseval frame. We also prove that these Parseval frames are more 
effective than traditional Parseval frames on recovering the signal 
with probabilistic erasures. In Section 5, we present two numeri-
cal experiments to demonstrate our results. It is shown that the 
reconstruction errors become littler and littler as the redundancy 
of frames increase. And the second example shows that the newly 
proposed PM Parseval frames perform better than existing PM and 
traditional Parseval frames for recovering signals.

2. Preliminaries and frame expansion for coding

We denote by H a Hilbert space, by f T the transposition of 
f ∈ H and by E(X) the expectation of a random variable X . IH is 
the identity operator on H. I is a countable index set. |I| denotes 
the cardinality of a set I .

A sequence { f i}i∈I is called a frame for H if there exist con-
stants 0 < A ≤ B < ∞ such that

A‖ f ‖2 ≤
∑
i∈I

| 〈 f , f i〉 |2 ≤ B‖ f ‖2, ∀ f ∈ H .

The constants A and B are called frame bounds. If A = B we 
call this frame an A-tight frame and if A = 1 it is called a Parseval 
frame. A uniform frame is a frame when all the elements in the 
frame sequence have the same norm. An equiangular frame is a 
frame if it satisfies the condition that 

∣∣〈 f i, f j
〉∣∣ is a constant for all 

i �= j.
An orthonormal basis is a Parseval frame, but not the converse. 

We recall an example of uniform equiangular Parseval frame which 
is not a basis: the Mercedes-Benz frame F in R2.
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Let F = { f i}i∈I be a frame for Hilbert space H. The operator 
�F :H → �2(I) defined by

�F ( f ) =
∑
i∈I

〈 f , f i〉 ei

is called the analysis (encoding) operator of F , where {ei}i∈I is the 
standard orthonormal basis for �2(I). A simple calculation shows 
that the adjoint operator �∗

F of �F satisfies

�∗
F

(∑
i∈I

ciei

)
=
∑
i∈I

ci f i

and the operator �∗
F is called the synthesis (decoding) operator of 

F . Let S F = �∗
F �F , then we have

S F ( f ) =
∑
i∈I

〈 f , f i〉 f i, ∀ f ∈ H .

And S F is called the frame operator which is a positive invertible 
bounded linear operator on H. The following reconstruction formula
holds:

f =
∑
i∈I

〈 f , f i〉 S−1
F f i =

∑
i∈I

〈
f , S−1

F f i

〉
f i, ∀ f ∈ H . (1)

Then the family {S−1
F f i}i∈I is called the canonical dual frame of F .

If F = { f i}i∈I is a frame for H, then the family F ◦ = { f ◦
i }i∈I , 

where f ◦
i = S−1/2

F f i , i ∈ I , is a Parseval frame for H.
The frame ̃F = { f̃ i}i∈I is called an alternate dual frame of F if the 

following formula holds:

f =
∑
i∈I

〈 f , f i〉 f̃ i =
∑
i∈I

〈
f , f̃ i

〉
f i, ∀ f ∈ H . (2)

For a more extensive introduction to frame theory, we refer the 
interested readers to the references [10–13].

For the purpose of coding, we only handle frames with finitely 
many vectors in finite dimension Hilbert space H. Let F = { f i}i∈I
be a finite frame for an n-dimension Hilbert space H and |I| = m, 
then we necessarily have m ≥ n. When m = n, F is a basis of H. In 
order to ensure the redundancy for coding, we set m > n through-
out this paper. We also use the terminology (m, n)-frame to refer 
to a frame of m-elements for an n-dimensional Hilbert space H.

In coding theory, a signal vector f is encoded as frame coeffi-
cients �F ( f ) = {〈 f , f i〉}i∈I . Then these coefficients are transmitted 
to a receiver for decoding to reconstruction the signal f . If the 
communication channel is perfect, so that no erasure occurs, then 
the signal can be perfectly reconstructed by using (1) (or (2)). 
But in a more realistic setting where the channel is not perfect, 
some coefficients may be erased during the transmission. In this 
case, recently many researchers have been working on different 
approaches to this problem.

Let ci = 〈 f , f i〉 for all i ∈ I . Assume that {ci}i∈�c are the erased 
data in the transmission process, where � ⊂ I and �c = I \ �. 
One approach is to approximate f by (2), and the error operator is 
given by
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