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Abstract

An adaptive mesh refinement method for solving optimal control problems is developed. The method
employs orthogonal collocation at Legendre–Gauss–Radau points, and adjusts both the mesh size and the
degree of the approximating polynomials in the refinement process. A previously derived convergence rate
is used to guide the refinement process. The method brackets discontinuities and improves solution accuracy
by checking for large increases in higher-order derivatives of the state. In regions between discontinuities,
where the solution is smooth, the error in the approximation is reduced by increasing the degree of the
approximating polynomial. On mesh intervals where the error tolerance has been met, mesh density may be
reduced either by merging adjacent mesh intervals or lowering the degree of the approximating polynomial.
Finally, the method is demonstrated on two examples from the open literature and its performance is
compared against a previously developed adaptive method.
& 2015 The Franklin Institute. Published by Elsevier Ltd. on behalf of The Franklin Institute. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Over the past two decades, direct collocation methods have become popular in the numerical
solution of nonlinear optimal control problems. In a direct collocation method, the state and the
control are discretized at a set of appropriately chosen points in the time interval of interest. The
continuous-time optimal control problem is then transcribed to a finite-dimensional nonlinear
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programming problem (NLP) and the NLP is solved using well known software [1,2]. Originally,
direct collocation methods were developed as h methods (for example, Euler or Runge–Kutta
methods) where the time interval is divided into a mesh and the state is approximated using the
same fixed-degree polynomial in each mesh interval. Convergence in an h method is then
achieved by increasing the number and placement of the mesh points [3–5]. More recently, a
great deal of research has been done in the class of direct Gaussian quadrature orthogonal
collocation methods [6–23]. In a Gaussian quadrature collocation method, the state is typically
approximated using a Lagrange polynomial where the support points of the Lagrange polynomial
are chosen to be points associated with a Gaussian quadrature. Originally, Gaussian quadrature
collocation methods were implemented as p methods using a single interval. Convergence of the
p method was then achieved by increasing the degree of the polynomial approximation. For
problems whose solutions are smooth and well-behaved, a Gaussian quadrature collocation
method has a simple structure and converges at an exponential rate [24–26]. The most well
developed Gaussian quadrature methods are those that employ either Legendre–Gauss (LG)
points [10,15], Legendre–Gauss–Radau (LGR) points [16,17,19], or Legendre–Gauss–Lobatto
(LGL) points [6].
Many mesh refinement methods employing h or p direct collocation methods have been

developed previously. Reference [27] describes what is essentially a p method where a
differentiation matrix is used to identify switches, kinks, corners, and other discontinuities in the
solution. References [28,29] locally refine the grids by splitting selected intervals according to
some splitting criterion. Reference [5] develops a fixed-order method that uses a density function
to generate a sequence of non-decreasing size meshes on which to solve the optimal control
problem. References [30,31] (and the references therein) describe a dual weighted residual
(DWR) method for mesh refinement and goal-oriented model reduction. The DWR method uses
estimates of a dual multiplier together with local estimates of the residuals to adaptively refine a
mesh and control the error in problems governed by partial differential equations. Finally, in Ref.
[3] an error estimate is developed by integrating the difference between an interpolation of the
time derivative of the state and the right-hand side of the dynamics. The error estimate developed
in Ref. [3] is predicated on the use of a fixed-order method (for example, trapezoid, Hermite–
Simpson, Runge–Kutta) and computes a low-order approximation of the integral of the
aforementioned difference. Different from all of this previous research where the order of the
method is fixed and the mesh can only increase in size, in the method of this paper varies the
degree of the polynomial approximation and the mesh size can be reduced.
While h methods have a long history and p methods have shown promise in certain types of

problems, both the h and p approaches have limitations. Specifically, achieving a desired
accuracy tolerance may require an extremely fine mesh (in the case of an h method) or may
require the use of an unreasonably large degree polynomial approximation (in the case of a p
method). In order to reduce significantly the size of the finite-dimensional approximation, and
thus improve computational efficiency of solving the NLP, hp collocation methods have been
developed. In an hp method, both the number of mesh intervals and the degree of the
approximating polynomial within each mesh interval are allowed to vary. Originally, hp methods
were developed as finite-element methods for solving partial differential [32–36]. In the past few
years the problem of developing hp methods for solving optimal control problems has been of
interest [20,21,23]. References [20,21] describe hp adaptive methods where the error estimate is
based on the difference between an approximation of the time derivative of the state and the
right-hand side of the dynamics midway between the collocation points. It is noted that the
approach of Refs. [20,21] creates a great deal of noise in the error estimate, thereby making these
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