
Astronomy and Computing 16 (2016) 109–130

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

The moving mesh code Shadowfax
B. Vandenbroucke ∗, S. De Rijcke
Department of Physics & Astronomy, Ghent University, Krijgslaan 281, S9, 9000 Gent, Belgium

a r t i c l e i n f o

Article history:
Received 18 December 2015
Accepted 6 May 2016
Available online 18 May 2016

Keywords:
Methods: numerical
Hydrodynamics

a b s t r a c t

We introduce the moving mesh code Shadowfax, which can be used to evolve a mixture of gas, subject
to the laws of hydrodynamics and gravity, and any collisionless fluid only subject to gravity, such as cold
dark matter or stars. The code is written in C++ and its source code is made available to the scientific
community under the GNU Affero General Public Licence. We outline the algorithm and the design of our
implementation, and demonstrate its validity through the results of a set of basic test problems, which
are also part of the public version.We also compare Shadowfaxwith a number of other publicly available
codes using different hydrodynamical integration schemes, illustrating the advantages and disadvantages
of the moving mesh technique.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Modern simulations of galaxy formation and evolution crucially
depend on an accurate treatment of the hydrodynamics of the
interstellar medium (ISM) (Vogelsberger et al., 2014; Schaye
et al., 2015). The ISM fuels star formation and is disrupted by
stellar feedback, and it is this complex interplay that at least
partly governs the observable content of galaxies (Verbeke et al.,
2015). If we want to be able to compare simulated galaxies with
observations, we need to properly resolve these effects.

Hydrodynamics is also important on smaller scales, when
simulating star-forming clouds (Greif et al., 2011; Dobbs, 2015),
feedback from a single star (Geen et al., 2015), or even planet
formation in a circumstellar disc (Duffell and MacFadyen, 2012).
A robust hydrodynamical integration scheme, optionally extended
with magnetic fields, self-gravity or radiation transport, is hence
an indispensable tool for many astrophysical simulators.

Historically, two major classes of hydrodynamical solvers
have been developed: grid based Eulerian techniques (Teyssier,
2002; Keppens et al., 2012), and particle-based Lagrangian tech-
niques (Springel, 2005; Price, 2012). Both discretize the fluid as a
finite set of fluid elements. In the former, the fluid elements are
cells, usually defined through a (hierarchical) Cartesian grid, which
have a fixed position in space, but can be allowed to refine or dere-
fine according to the quality of the integration. In the latter, the
fluid elements are particles, which move along with the flow, with

∗ Corresponding author.
E-mail addresses: bert.vandenbroucke@ugent.be (B. Vandenbroucke),

sven.derijcke@ugent.be (S. De Rijcke).

the hydrodynamics being expressed as inter-particle forces. It is
generally acknowledged that grid based Eulerian techniques are
more accurate at solving the equations of hydrodynamics, espe-
cially sincemany particle-based implementations have fundamen-
tal difficulties in resolving hydrodynamical instabilities (Agertz
et al., 2007). Nonetheless, Lagrangian techniques are widely used
to simulate systems with a high dynamic range, like cosmologi-
cal simulations and simulations of galaxies, since they more nat-
urally concentrate computational resources on regions of interest,
and provide a Galilean invariant reference frame.

Recently, a new class of hydrodynamical solvers has been
developed, mainly through the work of Springel (2010), which
aims to combine the advantages of Eulerian and Lagrangian
techniques (see also Duffell and MacFadyen, 2011; Yalinewich
et al., 2015). This new technique uses a moving grid to discretize
the fluid, and combines an unstructured grid based finite volume
integration scheme with the Lagrangian nature of a particle
method. We will refer to this method as amoving mesh technique.

A number of moving mesh codes are presented in the literature
(Springel, 2010; Duffell and MacFadyen, 2011), but only two of
them are publicly available: rich ascl:1410.005 (Yalinewich et al.,
2015), written in C++, and FVMHD3D,1 written in the parallel
object-oriented language Charm++ (Gaburov et al., 2012).

In this paper, we introduce the new, publicly available moving
mesh code Shadowfax (the logo of the code is shown in Fig. 1).
Shadowfax is written in C++, and makes ample use of the object-
oriented capabilities of the language to provide an easy to extend

1 https://github.com/egaburov/fvmhd3d.

http://dx.doi.org/10.1016/j.ascom.2016.05.001
2213-1337/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2016.05.001
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2016.05.001&domain=pdf
mailto:bert.vandenbroucke@ugent.be
mailto:sven.derijcke@ugent.be
http://www.ascl.net/1410.005
https://github.com/egaburov/fvmhd3d
http://dx.doi.org/10.1016/j.ascom.2016.05.001


110 B. Vandenbroucke, S. De Rijcke / Astronomy and Computing 16 (2016) 109–130

Fig. 1. The Shadowfax logo.

framework. The code is parallelized for use on distributedmemory
systems using the Message Passing Interface (MPI),2 and makes
use of the open source Boost C++ libraries3 to extend basic C++
language features. The code supports input and output using the
HDF5 library4 in a format compatible with the output of Gadget2
ascl:0003.001 (Springel, 2005), gizmo ascl:1410.003 (Hopkins,
2015) and swift5 (Gonnet et al., 2013). A user friendly compilation
process is guaranteed through the use of CMake.6

The hydrodynamical algorithm implemented in Shadowfax is
the same as described by Springel (2010), but with an additional
per-face slope limiter and flux limiter, and optional alternative
approximate Riemann solvers. The gravitational calculation is the
same as the tree force calculation in Gadget2 (Springel, 2005),
and uses the same relative tree opening criterion and Ewald
summation technique for periodic boundary conditions. We have
ported this algorithm to an object-oriented version, which makes
use of compile-time polymorphism using C++ templates. This
ensures a clear separation of the algorithmic details underlying the
tree walk from the actual physics involved with the gravitational
calculation. This way, it is much easier to focus on one particular
aspect of the code, e.g. scalability, precision etc., without needing
to worry about other aspects.

Likewise, we have separated the geometrical details contained
in the movingmesh from the hydrodynamical integration as mush
as possible, to make it easier to replace parts of the algorithm
(e.g. the Riemann solver, the grid etc.) by simply implementing an
alternative class.

Our code is predominantly meant to be used in astrophysical
simulations of galaxy formation and evolution, but could have
applications in other areas of science as well, as it is not difficult
to replace the Euler equations of hydrodynamics by e.g. the
shallow water equations by implementing a different Riemann
solver. Furthermore, the Voronoi grid used to discretize the fluid
can also be used for other purposes, e.g. for the suppression
of Poisson noise in randomly sampled distributions through
Lloyd’s algorithm (Lloyd, 1982), or as density estimator in N-body
simulations (Cloet-Osselaer et al., 2014).

In this paper, we outline the basic working of Shadowfax.
We mainly focus on the C++ implementation and the object-
oriented design of our code, and compare our code with other
hydrodynamical solvers on a number of test problems. Although
the current version of Shadowfax focuses more on design and
accuracy than on performance, we also highlight some basic
strong and weak scaling tests. Performance optimizations and
extra physical ingredients (e.g. gas cooling, star formation and
stellar feedback etc.) will be added in future versions of the
code. The source code of Shadowfax is publicly available from

2 http://www.mpi-forum.org.
3 http://www.boost.org.
4 https://www.hdfgroup.org/HDF5.
5 http://icc.dur.ac.uk/swift/.
6 https://cmake.org.

https://github.com/AstroUGent/shadowfax, and is distributed un-
der the GNU Affero General Public Licence.7

2. Algorithm

Many of the algorithms implemented in Shadowfax were
already discussed in Springel (2005, 2010). For completeness,
we summarize them below and point out the differences where
necessary.

Shadowfax is based on a finite volume method, which
subdivides the computational box into a (large) number of small
cells. The hydrodynamical integration is governed by the exchange
of fluxes between these cells.

These fluxes involve the conserved variables: mass (m), momen-
tum (p) and total energy (E). The Euler equations of hydrodynam-
ics however are usually formulated in terms of primitive variables:
density (ρ), flow velocity (v) and pressure (p). The pressure is
sometimes replaced by the thermal energy (u) or some form of en-
tropic function of the fluid, by using the equation of stateof the fluid.
In this work, we will always assume an ideal gas, with an equation
of state of the form

p = (γ − 1)ρu, (1)

where γ is the adiabatic index of the gas, for which we will adopt
the value γ = 5/3, unless otherwise stated. The conserved
variables andprimitive variables can be converted into one another
whenever a volume (V ) is available, since

m = ρV (2)
p = mv (3)

E = mu +
1
2
mv2. (4)

It is common practise to combine the conserved and primitive
variables into two state vectors,

Q =

m
p
E


and W =


ρ
v
p


. (5)

The change in conserved variables Qi for a cell i, during an
integration time step of length ∆t , is then given by

∆Qi = −∆t


j

AijFij

Wi,Wj, ∇Wi, ∇Wj, vij, ∆t


, (6)

where Aij is the surface area of the interface between cell i and cell
j. Fij is the flux between cell i and cell j, which in general depends
on the primitive variables of both cells and their gradients, the
velocity vij of the face with respect to a frame of reference fixed
to the simulation box, and the integration time step.

When formulated in this way, the finite volume method can
be applied to any discretization of the fluid, as long as this
discretization yields volumes to convert conserved variables to
primitive variables, and defines a concept of neighbour relations
between cells, and an associated surface area and velocity for the
neighbour interface. It can even be applied to mesh-free, particle-
based methods (Hopkins, 2015).

In the case of a moving mesh method, the discretization is
given by an unstructured Voronoi mesh, a 2D example of which
is shown in Fig. 2. The mesh is defined by means of a set of
mesh generating points (generators), with the cell associated with
a specific generator containing the region of space closest to that
generator. A Voronoi mesh can be defined in D dimensions, but

7 http://www.gnu.org/licenses.

http://www.ascl.net/0003.001
http://www.ascl.net/1410.003
http://www.mpi-forum.org
http://www.boost.org
https://www.hdfgroup.org/HDF5
http://icc.dur.ac.uk/swift/
https://cmake.org
https://github.com/AstroUGent/shadowfax
http://www.gnu.org/licenses


Download English Version:

https://daneshyari.com/en/article/497544

Download Persian Version:

https://daneshyari.com/article/497544

Daneshyari.com

https://daneshyari.com/en/article/497544
https://daneshyari.com/article/497544
https://daneshyari.com

