
Astronomy and Computing 16 (2016) 140–145

Contents lists available at ScienceDirect

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

Faster GPU-based convolutional gridding via thread coarsening
B. Merry
SKA South Africa, 3rd Floor, The Park, Park Road, 7405, South Africa

a r t i c l e i n f o

Article history:
Received 23 January 2016
Accepted 18 May 2016
Available online 31 May 2016

Keywords:
Techniques: interferometric
Methods: numerical
Computing methodologies: graphics
processors

a b s t r a c t

Convolutional gridding is a processor-intensive step in interferometric imaging. While it is possible to
use graphics processing units (GPUs) to accelerate this operation, existing methods use only a fraction of
the available flops. We apply thread coarsening to improve the efficiency of an existing algorithm, and
observe performance gains of up to 3.2× for single-polarization gridding and 1.9× for quad-polarization
gridding on a GeForce GTX 980, and smaller but still significant gains on a Radeon R9 290X.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Interferometric imaging is a key tool in radio astronomy, but
as modern instruments provide more antennas, longer baselines,
and more channels, it is becoming increasingly computationally
costly. A major component of an imaging pipeline is convolutional
gridding, as well as the corresponding degridding for predicting
visibilities.

Given the computational cost of gridding, it is natural to apply
accelerator hardware, of which the cheapest and most ubiquitous
is the Graphics Processing Unit (GPU). However, the irregular data
access patterns make this a non-trivial task. One of the first really
practical algorithms for GPU-accelerated gridding is due to Romein
(2012). Despite being state of the art, it typically spends only
about 25% of a GPU’s compute power on the actual convolution
operations. There are bottlenecks in the memory system, but also
computational overheads associated with address calculations.
Our goal is to reduce these overheads to makemore flops available
for the convolution calculations.

Our contribution is a modification to the algorithm in which
each thread of execution processes multiple elements of the grid.
This is a standard transformation called thread coarsening, but
which we have adapted to this specific problem. This allows some
overheads to be amortized across multiple grid elements, thus
increasing performance.

E-mail address: bmerry@ska.ac.za.

2. Background

2.1. Graphics processing units

While originally designed for computer graphics, GPUs have be-
come a common and accessible approach to accelerating general-
purpose computations. Here we provide only a brief introduction
to GPU architecture; a complete discussion is beyond the scope of
this paper. Two common APIs used to program GPUs are CUDA (a
proprietary standard from NVIDIA), and OpenCL (a cross-vendor
standard that is also applicable to CPUs and FPGAs). We will use
the OpenCL terminology as it is more generic, although our imple-
mentation runs on both CUDA and OpenCL. For readers more fa-
miliar with CUDA, substitute thread for work-item, thread-block
for work-group, grid for kernel-instance, shared memory for local
memory, and streaming multiprocessor for compute unit.

OpenCL works on a single-program multiple-data model. A
single program, called a kernel, is executed many times in parallel.
Each execution is awork-item. Work-items are arranged intowork-
groups. The work-items of a work-group are guaranteed to execute
concurrently, and can synchronize and communicate with each
other. The set of all work-items launched at one time is called
a kernel-instance. GPUs comprise multiple compute units which
operate largely independently, each with their own schedulers, L1
caches, register file and execution units—similar to CPU cores. Each
work-group is assigned to one compute unit, but a compute unit
can run multiple work-groups concurrently.

GPUs also have multiple memory systems. The slowest, largest
memory is global memory, which is generally off-chip DRAM. There
are usually also several levels of cache for this globalmemory. Local

http://dx.doi.org/10.1016/j.ascom.2016.05.004
2213-1337/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.ascom.2016.05.004
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2016.05.004&domain=pdf
mailto:bmerry@ska.ac.za
http://dx.doi.org/10.1016/j.ascom.2016.05.004


B. Merry / Astronomy and Computing 16 (2016) 140–145 141

memory is fast on-chip memory local to a compute unit, which
can be used for work-items in a work-group to communicate with
each other, and is also used as a software-managed cache. The
fastest memory is registers, which are local to a work-item. There
are other special-purpose memory types, but they are not relevant
here.

2.2. Convolutional gridding

Consider the full-Sky radio interferometry measurement equa-
tion (RIME) (Smirnov, 2011, eq 17):

Kpq = e−2π i(upq l+vpqm+wpq(n−1))

Vpq = Gp


lm

1
n
KpqEpBEH

q dl dm

GH
q .

(1)

Here, l,m, n are direction cosines parameterizing the sky, (upq,
vpq, wpq) is the baseline vector between antennas p and q, B is the
brightness matrix at (l,m, n), Ep is a Jones matrix for direction-
dependent effects, Gp is a Jones matrix for direction-independent
effects, and Vpq is the predicted visibility.

With the exception of the wpq(n − 1) term in the exponent,
this is a Fourier transform relationship between visibilities and
the sky. Evaluating or inverting the RIME directly is prohibitively
expensive, so it is typically done using fast Fourier transforms
(FFTs) (Cooley and Tukey, 1965). However, visibilities are not
sampled on a regular grid, so an extra gridding step must be taken
to generate such a grid before using the FFT to produce an image.

Simply snapping each visibility sample to the nearest point on
the grid would cause severe artifacts, particularly aliasing. Instead,
each visibility sample is treated as a Dirac delta, convolved with
some function, and then sampled onto the grid. Convolution in
visibility space is equivalent to multiplication in image space, so
using a function with bounded support in image space provides
antialiasing (Greisen, 1979). The ewpq(n−1) and Ep terms can also
be handled by convolution in visibility space—these are known as
W-projection (Cornwell et al., 2008) and A-projection (Bhatnagar
et al., 2006) respectively.

The gridding convolution function (GCF) cannot always be
computed analytically, and even when it can, it is usually
expensive to do so. Thus, tables of GCFs are normally precomputed
numerically. To reduce aliasing, the GCF needs to be sampled
at a higher resolution than the grid itself. A typical value is 8×
oversampling (Romein, 2012), but thiswill depend onhow far from
the field of view one expects to find contaminating signals.

Efficient gridding on a GPU is challenging because the problem
has irregular structure, with the memory accesses depending on
the uvw coordinates. There is plenty of parallelism, but multiple
visibilities will contribute to each grid point and so there are data
hazards. A naïve implementation will also be totally memory-
bound: multiplying two single-precision complex numbers and
accumulating the result into memory requires 8 flops and 16 bytes
of memory traffic, while typical desktop GPUs can have compute-
to-bandwidth ratios of 15–20 flops per byte.

Romein (2012) introduced the first reasonably efficient GPU-
accelerated gridding algorithm. It takes advantage of the spatial
coherence of the data to reduce memory bandwidth. For a single
baseline and frequency, the UV-plane positions move slowly
over time as the Earth rotates. Similarly, moving to an adjacent
frequency bin involves a small shift in the UV plane. Thus, if one
iterates over the visibilities for a single baseline, the GCF footprints
will almost entirely overlap. This makes it possible to maintain
sums in registers which are only occasionally flushed to global
memory.

Fig. 1 shows how the algorithm works. The grid is divided into
bins, which are at least as large as the GCF—in the original algo-
rithm, they are the same size. Awork-item is responsible for all the

Fig. 1. Overviewof Romein’s gridding algorithm. The dashed box shows a bounding
box containing the GCF footprint. One work-item handles grid points marked with
a dot; another handles those marked with a cross, and so on. The gray box indicates
a tile: once all the grid points in a tile have been handled, the same work-items are
recycled to update the next tile.

positions in the grid that have the same relative placement within
a bin, e.g., all the grid positionsmarkedwith a dot are the responsi-
bility of onework-item. A bin-sized bounding box is placed around
the GCF footprint for one visibility, which will contain exactly one
grid-point perwork-item. Eachwork-itemmaintains an in-register
accumulator for that grid point. When the bounding box moves,
some work-items will switch to a different grid point: when this
happens, thosework-items flush their accumulator to globalmem-
ory using an atomic addition. If the bounding box moves by one
grid point, then only O(N) atomic updates are made for an N × N
GCF, thus greatly reducing the memory traffic.

Coarse-grained parallelism is achieved by assigning each
baseline to a separate work-group. Because these work-groups
operate independently, they may potentially update the same grid
points at the same time; this is why grid updates are done using
atomic instructions.

A complication arises if the bins are too large to hold an entire
bin in registers at once. In this case, each bin is split into tiles (Fig. 1
shows one tile in gray), and a work-group handles only one tile’s-
worth of work-items. Romein iterates serially over tiles within the
GPU code: after a work-group has iterated over all visibilities in
its baseline, it iterates over them again, but taking responsibility
for the next tile. Our implementation is parallel rather than serial,
using a separate work-group per tile. In either case, the number of
atomic updates to the grid is unaffected by tile size, but visibilities
and their coordinates are loaded from memory once for each tile
in a bin.

Muscat (2014) noticed that it is not necessary to grid each visi-
bility individually. In some cases, particularly for short baselines,
two adjacent visibilities have the same position on the higher-
resolution grid used to sample the GCF. This means that they will
bemultiplied by the sameGCF samples, and thus they can be added
together to form a single visibility. This yields identical results (up
to floating-point precision) but reduces the number of visibilities
to grid. He refers to this merging process as compression. We use
compression in our implementation, and in our resultswe consider
only the rate for gridding these compressed visibilities, rather than
the original visibilities.

3. Thread coarsening

Thread coarsening is the process of merging multiple work-
items (also known as threads) into one. This is similar to loop un-
rolling, but applied across parallel work-items rather than across
serial loop iterations. This improves instruction-level parallelism



Download English Version:

https://daneshyari.com/en/article/497546

Download Persian Version:

https://daneshyari.com/article/497546

Daneshyari.com

https://daneshyari.com/en/article/497546
https://daneshyari.com/article/497546
https://daneshyari.com

