

Available online at www.sciencedirect.com

Computer methods in applied mechanics and engineering

Comput. Methods Appl. Mech. Engrg. 302 (2016) 193-252

Review

www.elsevier.com/locate/cma

Geometric multiscale modeling of the cardiovascular system, between theory and practice

A. Quarteroni^a, A. Veneziani^b, C. Vergara^{c,*}

^a SB MATHICSE CMCS, EPFL, Lausanne, Switzerland ^b Department of Mathematics and Computer Science, Emory University, Atlanta (GA), United States ^c MOX, Dipartimento di Matematica, Politecnico di Milan, Italy

Received 26 September 2015; received in revised form 10 January 2016; accepted 12 January 2016 Available online 21 January 2016

Abstract

This review paper addresses the so called *geometric multiscale* approach for the numerical simulation of blood flow problems, from its origin (that we can collocate in the second half of '90s) to our days. By this approach the blood fluid-dynamics in the whole circulatory system is described mathematically by means of heterogeneous problems featuring different degree of detail and different geometric dimension that interact together through appropriate interface coupling conditions.

Our review starts with the introduction of the stand-alone problems, namely the 3D fluid–structure interaction problem, its reduced representation by means of 1D models, and the so-called lumped parameters (aka 0D) models, where only the dependence on time survives. We then address specific methods for stand-alone 3D models when the available boundary data are not enough to ensure the mathematical well posedness. These so-called "defective problems" naturally arise in practical applications of clinical relevance but also because of the interface coupling of heterogeneous problems that are generated by the geometric multiscale process. We also describe specific issues related to the boundary treatment of reduced models, particularly relevant to the geometric multiscale coupling. Next, we detail the most popular numerical algorithms for the solution of the coupled problems. Finally, we review some of the most representative works – from different research groups – which addressed the geometric multiscale approach in the past years.

A proper treatment of the different scales relevant to the hemodynamics and their interplay is essential for the accuracy of numerical simulations and eventually for their clinical impact. This paper aims at providing a state-of-the-art picture of these topics, where the gap between theory and practice demands rigorous mathematical models to be reliably filled. © 2016 Elsevier B.V. All rights reserved.

Keywords: Blood flow simulation; Fluid-structure interaction; 1D models; Lumped parameter models; Geometric multiscale coupling

Contents

1.	Introduction	.195
2.	Stand-alone models: fluid, structure and their interaction	.196

* Corresponding author. *E-mail address:* christian.vergara@polimi.it (C. Vergara).

http://dx.doi.org/10.1016/j.cma.2016.01.007 0045-7825/© 2016 Elsevier B.V. All rights reserved.

	2.1.	The 3D	model	196
		2.1.1.	Modeling blood, vascular wall and their interaction	196
		2.1.2.	Numerical discretization	198
		2.1.3.	Further developments and comments	199
	2.2.	The 1D	model	200
		2.2.1.	The Euler model for an arterial segment	201
		2.2.2.	Assembling a network of 1D tracts	203
		2.2.3.	Numerical discretization	204
		2.2.4	Further developments and comments	204
	23	Lumpe	d parameter models	204
		231	Lumped parameter modeling of an arterial tract	205
		2.3.1.	From an arterial tract to a compartment	205
		2.3.2.	On the numerical solution of lumned parameter models	210
		2.3.3.	Further developments	210
3	Roun	2.3.4.	Further developments	211
5.	2 1	2D daf	autons, what we have, what is missing	211
	5.1.	2 1 1	El en este con litier	
		3.1.1.	Flow rate condition	212
		3.1.2.	Mean pressure boundary conditions	213
		3.1.3.	A control-based approach	214
		3.1.4.	Further developments and comments	215
	3.2.	The rol	e of the Riemann variables for 1D models	217
	3.3.	0D mod	lels and the enforcement of boundary data	219
4.	Coup	ling of 3I	D–1D, 3D–0D, and 1D–0D models	220
	4.1.	3D-1D	coupling	220
		4.1.1.	Formulation of the coupled problem: domain decomposition and reduction	220
		4.1.2.	Interface coupling conditions	221
		4.1.3.	Energy estimates and interface conditions	224
		4.1.4.	Further developments and comments	226
	4.2.	3D-0D	coupling	227
		4.2.1.	Formulation of the problem	227
		4.2.2.	Monolithic solution of 3D–0D windkessel models	228
	4.3.	1D-0D	coupling	229
5.	Nume	erical stra	tegies	230
	5.1.	Partitio	ned algorithms: generalities	230
	5.2.	The 3D	-1D case	231
	5.3.	The 3D	-OD case	
	54	The 1D	-OD case	237
	5.5	Further	developments and comments	237
6	An ar	notated 1	eview of selected works	237
0.	6.1	3D_1D	coupling	237
	0.1.	611	"On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels" by	250
		0.1.1.	L Formaggia LE Gerbau E Nobile A Quarteroni 2001 [65]	228
		612	Con the notantialities of 2d, 1d sounded models in hemodynamics simulations" by DL Plance, M.P.	238
		0.1.2.	Di ule potentiantes of 50–10 coupled models in nemodynamics simulations by F.J. Blanco, M.K.	220
	60	20.00	Pivello, S.A. Urquiza, K.A. Feijoo, 2009 [52]	238
	0.2.	3D-0D		239
		6.2.1.	"Coupling between lumped and distributed models for blood flow problems" by A. Quarteroni, S.	220
			Ragni and A. veneziani, 2001 [175]	239
		6.2.2.	"On coupling a lumped parameter heart model and a three-dimensional finite element Aorta model"	
			by H. Kim, I.E. Vignon-Clementel, C. Figueroa, J. Ladisa, K. Jansen, J. Feinstein, and C. Taylor, 2009	• • •
			[113]	240
	6.3.	1D-0D	coupling	241
		6.3.1.	"Multiscale modelling of the circulatory system: a preliminary analysis", by L. Formaggia, F. Nobile,	
			A. Quarteroni, A. Veneziani, 1999 [70]	241
		6.3.2.	"A global multiscale mathematical model for the human circulation with emphasis on the venous	
			system", by L.O. Muller and E.F. Toro, 2014 [143]	241
	6.4.	3D-1D	–0D coupling	242

Download English Version:

https://daneshyari.com/en/article/497622

Download Persian Version:

https://daneshyari.com/article/497622

Daneshyari.com