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a b s t r a c t

Linear Brownian motion with constant drift is widely used in remaining useful life predic-
tions because its first hitting time follows the inverse Gaussian distribution. State space
modelling of linear Brownian motion was proposed to make the drift coefficient adaptive
and incorporate on-line measurements into the first hitting time distribution. Here, the
drift coefficient followed the Gaussian distribution, and it was iteratively estimated by
using Kalman filtering once a new measurement was available. Then, to model nonlinear
degradation, linear Brownian motion with adaptive drift was extended to nonlinear
Brownian motion with adaptive drift. However, in previous studies, an underlying assump-
tion used in the state space modelling was that in the update phase of Kalman filtering, the
predicted drift coefficient at the current time exactly equalled the posterior drift coefficient
estimated at the previous time, which caused a contradiction with the predicted drift coef-
ficient evolution driven by an additive Gaussian process noise. In this paper, to alleviate
such an underlying assumption, a new state space model is constructed. As a result, in
the update phase of Kalman filtering, the predicted drift coefficient at the current time
evolves from the posterior drift coefficient at the previous time. Moreover, the optimal
Kalman filtering gain for iteratively estimating the posterior drift coefficient at any time
is mathematically derived. A discussion that theoretically explains the main reasons why
the constructed state space model can result in high remaining useful life prediction accu-
racies is provided. Finally, the proposed state space model and its associated Kalman filter-
ing gain are applied to battery prognostics.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

In the research community of prognostics and health management [1], the remaining useful life (RUL) prediction [2–4]
under linear Brownian motion with constant drift [5,6] has attracted much attention because its first hitting time follows
the inverse Gaussian distribution given a soft failure threshold. Here, the first hitting time is defined as the time when linear
Brownian motion hits the soft failure threshold for the first time. Therefore, the difference between the first hitting time and
the current prediction time can be regarded as the RUL. Nevertheless, linear Brownian motion with constant drift cannot be
used to model the degradation of a specific product because the drift coefficient established by a population of historical
degradation data is always fixed in linear Brownian motion for degradation modelling and RUL prediction. In the pioneering
work of Wang et al. [7], the authors constructed a state space model of linear Brownian motion and used Kalman filtering to
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posteriorly estimate the drift coefficient over time when a new measurement was available. As a result, the drift coefficient
of linear Brownian motion became adaptive and measurements were incorporated into the first hitting time distribution,
such that RUL prediction became more accurate than the idea of linear Brownian motion with constant drift. Following this
work, Si et al. [8] extended linear Brownian motion with adaptive drift to nonlinear Brownian motion with adaptive drift so
as to model nonlinear degradation. Most importantly, the authors mathematically derived the first hitting time distribution
of nonlinear Brownian motion with adaptive drift, which was a milestone in the modelling of nonlinear degradation by using
Brownian motion. Since then, many nonlinear Brownian motion-based prognostic methods [9–22] have been proposed and
designed to predict the RUL of various products and systems. According to our literature review, the same state space model
as that proposed in Ref. [7] was commonly adopted in [9–22] to make these Brownian motion-based prognostic methods
adaptive. A flowchart of Brownian motion with adaptive drift-based prognostic methods is plotted in Fig. 1.

The commonly used state space model [7,9–22] is mathematically formulated as follows:

kti ¼ kti�1
þ gti

xti ¼ xti�1
þ kti�1

Z ti

ti�1

lðs; hÞdsþ rBeti
ð1Þ

where kti is the predicted drift coefficient at the current time ti before a new measurement xti is available; kti�1 is the drift
coefficient posteriorly estimated at the previous time ti�1 when the previous measurement xti�1 at the previous time ti�1

is available; lðs; hÞ is a nonlinear function with parameters h used in nonlinear Brownian motion; gti
is an additive Gaussian

process noise drawn from a Gaussian distribution with mean 0 and variance Q; eti is an additive Gaussian observation noise
drawn from a Gaussian distribution with mean 0 and variance ðti � ti�1Þ; and rB is the diffusion coefficient. If lðs; hÞ is a con-
stant such as 1 without loss of generality, Eq. (1) is exactly reduced to the state space modelling of linear Brownian motion
proposed in [7]. Kalman filtering [23] contains two recursive phases, including prediction and update phases, to iteratively
estimate the posterior distribution of the drift coefficient kti at the current time ti when a new measurement xti is available.

Prediction phase

The predicted estimate bkti jti�1
of the drift coefficient kti at time ti is bkti jti�1

¼ bkti�1 jti�1
before a new measurement xti is

available.

The variance Pti jti�1 of the predicted estimate bkti jti�1 of the drift coefficient kti at time ti is Pti jti�1 ¼ Pti�1 jti�1 þ Q before a new
measurement xti is available.

Update phase

The innovation or measurement residual is byti ¼ xti � xti�1
� bkti�1 jti�1

R ti
ti�1

lðs; hÞds.
The posterior estimate bkti jti of the drift coefficient kti at time ti is bkti jti ¼ bkti jti�1 þ Kti

byti when a newmeasurement xti is avail-

able. The optimal Kalman filtering gain Kti is Kti ¼
Pti jti�1

R ti
ti�1

lðs;hÞds

Pti jti�1

R ti
ti�1

lðs;hÞds
� �2

þðrBÞ2ðti�ti�1Þ
.

The variance Pti jti of the posterior estimate bkti jti of the drift coefficient kti at time ti is Pti jti ¼ Pti jti�1 � Pti jti�1Kti

R ti
ti�1

lðs; hÞds.
Solving the state space model provided by Eq. (1) can make some prognostic methods [7,9–22] adaptive, which implies

that the drifted coefficient kti at time ti is posteriorly and iteratively updated by using Kalman filtering and up-to-date mea-
surements Xðt0:iÞ ¼ x0; x1; . . . ; xif g. However, an underlying assumption is used in the state space model provided by Eq. (1):
in the update phase of Kalman filtering, the predicted drift coefficient kti at the current time ti exactly equals the posterior
drift coefficient kti�1

at the previous time ti�1, which causes a contradiction with the predicted drift evolution driven by the
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Fig. 1. A flowchart of Brownian motion with adaptive drift-based prognostic methods.
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