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a b s t r a c t 

We address the problem of voice activity detection in difficult acoustic environments including high lev- 

els of noise and transients, which are common in real life scenarios. We consider a multimodal setting, 

in which the speech signal is captured by a microphone, and a video camera is pointed at the face of the 

desired speaker. Accordingly, speech detection translates to the question of how to properly fuse the au- 

dio and video signals, which we address within the framework of deep learning. Specifically, we present 

a neural network architecture based on a variant of auto-encoders, which combines the two modalities, 

and provides a new representation of the signal, in which the effect of interferences is reduced. To fur- 

ther encode differences between the dynamics of speech and interfering transients, the signal, in this 

new representation, is fed into a recurrent neural network, which is trained in a supervised manner for 

speech detection. Experimental results demonstrate improved performance of the proposed deep archi- 

tecture compared to competing multimodal detectors. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Voice activity detection is a segmentation problem of a given 

speech signal into sections that contain speech and sections that 

contain only noise and interferences. It constitutes an essential 

part in many modern speech-based systems such as those for 

speech and speaker recognition, speech enhancement, emotion 

recognition and dominant speaker identification. We consider a 

multimodal setting, in which speech is captured by a microphone, 

and a video camera is pointed at the face of the desired speaker. 

The multimodal setting is especially useful in difficult acoustic en- 

vironments, where the audio signal is measured in the presence 

of high levels of acoustic noise and transient interferences, such as 

keyboard tapping and hammering [1,2] . The video signal is com- 

pletely invariant to the acoustic environment, and nowadays, it 

is widely available in devices such as smart-phones and laptops. 

Therefore, proper incorporation of the video signal significantly im- 

proves voice detection, as we show in this paper. 

In silent acoustic environments, speech segments in a given sig- 

nal are successfully distinguished from the silence segments using 

methods based on simple acoustic features such as zero-crossing 

rate and energy values in short time intervals [3–5] . However, 
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the performances of these methods significantly deteriorate in the 

presence of noise even with moderate levels of signal-to-noise ra- 

tios (SNR). Another group of methods assumes statistical models 

for the noisy signal, focusing on estimation of the model param- 

eters. For example, the variances of speech and noise can be es- 

timated by tracking the variations of the noisy signal over time 

[6–9] . The main drawback of such methods is that they cannot 

properly model highly non-stationary noise and transient interfer- 

ences, which are in the main scope of this study. The spectrum of 

transients often rapidly varies over time, as does the spectrum of 

speech, and as a result, they are not properly distinguished [2] . 

More recent studies address the problem of voice activity de- 

tection from a machine learning point of view, in which the goal 

is to classify segments of the noisy signal into speech and non- 

speech classes [10,11] . Learning-based methods learn implicit mod- 

els from training data instead of assuming explicit distributions for 

the noisy signal. A particular school of models, relevant to this 

paper, is deep neural networks, which have gained popularity in 

recent years in a variety of machine learning tasks. These mod- 

els utilize multiple hidden layers for useful signal representations, 

and their potential for voice activity detection has been partially 

exploited in recent studies. Zhang and Wu [12] proposed using 

a deep-belief network to learn an underlying representation of a 

speech signal from predefined acoustic features. The new repre- 

sentation is then fed into a linear classifier for speech detection. 

Mendelev et al. [13] introduced a multi-layer perceptron network 

for speech detection, and proposed to improve its robustness to 
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noise using the “Dropout” technique [14] . Despite the improved 

performance, the network in [13] classifies each time frame inde- 

pendently, thus ignoring temporal relations between segments of 

the signal. The studies presented in [15–18] propose using a re- 

current neural network (RNN) to naturally exploit temporal infor- 

mation by incorporating previous inputs for voice detection. These 

methods however still struggle in frames that contain both speech 

and transients. Since transients are characterized by fast variations 

in time and high energy values, they often appear more dominant 

than speech. Therefore, frames containing only transients appear 

similar to frames containing both transients and speech, so that 

they are wrongly detected as speech frames. 

A different school of studies suggests improving the robust- 

ness of speech detection to noise and transients by incorporating a 

video signal, which is invariant to the acoustic environment. Often, 

the video captures the mouth region of the speakers, and it is rep- 

resented by specifically designed features, which model the shape 

and movement of the mouth in each frame. Examples of such fea- 

tures are the height and the width of the mouth [19,20] , key-points 

and intensity levels extracted from the region of the mouth [21–

24] , and motion vectors [25,26] . 

Two common approaches exist in the literature concerning the 

fusion of audio and video signals, termed early and late fusion 

[27,28] . In early fusion, video and audio features are concatenated 

into a single feature vector and processed as single-modal data 

[29] . In late fusion, measures of speech presence and absence are 

constructed separately from each modality, and then combined us- 

ing statistical models [30,31] . Dov et al. [32,33] , for example, pro- 

posed to obtain separate low dimensional representations of the 

audio and video signals using diffusion maps. The two modali- 

ties are then fused by a combination of speech presence measures, 

which are based on spatial and temporal relations between sam- 

ples of the signal in the low dimensional domain. 

In this paper, we propose a deep neural network architec- 

ture for audio-visual voice activity detection. The architecture is 

based on specifically designed auto-encoders providing an underly- 

ing representation of the signal, in which simultaneous data from 

audio and video modalities are fused in order to reduce the effect 

of transients. The new representation is incorporated into an RNN, 

which, in turn, is trained for speech presence/absence classification 

by incorporating temporal relations between samples of the sig- 

nal in the new representation. The classification is performed in a 

frame-by-frame manner without temporal delay, which makes the 

proposed deep architecture suitable for online applications. 

The proposed deep architecture is evaluated in the presence 

of highly non-stationary noises and transient interferences. Exper- 

imental results show improved performance of the proposed ar- 

chitecture compared to single-modal approaches that exploit only 

the audio or video signals, thus demonstrating the advantage of 

audio-video data fusion. In addition, we show that the proposed 

architecture outperforms competing multimodal detectors. 

The remainder of the paper is organized as follows. In Section 2 , 

we formulate the problem. In Section 3 , we introduce the proposed 

architecture. In Section 4 , we demonstrate the performance of the 

proposed deep architecture for voice activity detection. Finally, in 

Section 5 , we draw conclusions and offer some directions for future 

research. 

2. Problem formulation 

We consider a speech signal simultaneously recorded via a 

single microphone and a video camera pointed at a front-facing 

speaker. The video signal comprises the mouth region of the 

speaker. It is aligned to the audio signal by a proper selection of 

the frame length and the overlap of the audio signal as described 

in Section 4 . Let a n ∈ R 

A and v n ∈ R 

V be feature representations of 

the n th frame of the clean audio and video signals, respectively, 

where A and V are the number of features. Similarly to a n , let ˜ a n ∈ 

R 

A be a feature representation of the audio signal contaminated by 

background noises and transient interferences. The audio and the 

video features are based on the Mel Frequency Cepstral Coefficients 

(MFCC) and motion vectors, respectively, and their construction is 

described in Section 4 . 

We consider a dataset of N consecutive triplets of frames 

( a 1 , ̃  a 1 , v 1 ) , ( a 2 , ̃  a 2 , v 2 ) , . . . , ( a N , ̃  a N , v N ) containing both speech and 

non-speech time intervals. We use the clean signal { a n } N 1 
to label 

each time frame n according to the presence or absence of speech. 

Let H 0 and H 1 be two hypotheses denoting speech absence and 

presence, respectively, and let I (n ) be a speech indicator of frame 

n , given by: 

I (n ) = 

{
1 , n ∈ H 1 

0 , n ∈ H 0 
. (1) 

The goal in this study is to estimate I (n ) , i.e., to classify each frame 

n as a speech or non-speech frame. 

Voice activity detection is especially challenging in the pres- 

ence of transients, which are typically more dominant than speech 

due to their short duration, high amplitudes and fast variations 

of the spectrum [2] . Specifically, frames that contain both speech 

and transients, for which H 1 holds, are often similar in the feature 

space to non-speech frames that contain only transients, so that 

they are often wrongly classified as non-speech frames. To address 

this challenge, we introduce a deep neural network architecture, 

which is designed to reduce the effect of transients by exploiting 

both the clean and the noisy audio signals, a n and 

˜ a n , respectively, 

and the video signal v n . 

3. Deep architecture for audio-visual voice activity detection 

3.1. Review of autoencoders 

The proposed deep architecture is based on obtaining a tran- 

sient reducing representation of the signal via the use of auto- 

encoders, which are shortly reviewed in this subsection for the 

sake of completeness [34] . An auto-encoder is a feed-forward neu- 

ral network with an input and output layers of the same size, 

which we denote by x ∈ R 

D and y ∈ R 

D , respectively. They are con- 

nected by one hidden layer h ∈ R 

M , such that the input layer x is 

mapped into the hidden layer h through an affine mapping: 

h = σ ( Wx + b ) , (2) 

where W is a D × M weight matrix, b is a bias vector and σ is 

an element-wise activation function. Then, h is mapped into the 

output layer y : 

y = ˜ σ
(

˜ W h + 

˜ b 

)
, (3) 

where ˜ W , ̃  b , ˜ σ are defined similarly to W, b and σ . 

Optimal parameters (weights) ˜ W , W , ̃  b , b are those that allow 

reconstructing the signal x at the output y of the auto-encoder, and 

they are obtained via a training procedure, by optimizing a certain 

loss function L ( x, y ), e.g., a square error, which we use here. It has 

been shown [35,36] that minimization of the auto-encoder’s loss 

function L ( x, y ) is equivalent to maximization of a lower bound 

on the retained information between the input and output of the 

auto-encoder. Thus, the hidden layer h , obtained by (2) with opti- 

mized parameters W and b , has the maximal mutual information 

with the input signal x . The activation functions σ, ˜ σ are usually 

chosen to be non-linear functions; here, we use a sigmoid function 

σ (z) = 

1 
1+ exp −z , so that the hidden layer h incorporates non-linear 

relations between different parts of the input signal [34,37] . In ad- 

dition, the dimension M of h is typically set smaller than that of 
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