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a b s t r a c t 

A novel algorithm for detecting compressed signals in low Signal-Noise-Ratio (SNR) without signal re- 

construction is proposed in this letter. When signals are projected in a sparse domain, the sparse vector 

with fixed position of non-zero elements is obtained and the non-zero elements obey Rician distribu- 

tion. However, additive white Gaussian noise (AWGN) is not sparse in this transformed domain, and the 

weight vector element amplitudes follow Rayleigh distribution while the AWGN is projected in the field. 

Thus, the distribution of sparse vector element amplitudes (SVEA) is considered to design a detector for 

an unknown-parameters signal. In addition, the accumulation of sparse vector in a sparse domain solves 

the problem of low-SNR signal detection. Later, the performance of the proposed detector is studied, and 

computer simulations show that it can detect the signals with a probability of 95% under the conditions 

that SNR = −28 dB and compressive ratio M/N = 0 . 15 . Furthermore, the receiver operating characteristic 

(ROC) theoretical and simulation curves are drawn. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Different from classical Nyquist sampling theorem, Compressive 

Sensing (CS) provides a new promising method for signal process- 

ing, which transforms the original signal into a new sparse domain 

signal with less sampling measurements. Then, signals can be re- 

constructed via the compressive measurements with high proba- 

bility [1,2] . CS is now reaching to maturity stage and lots of tech- 

niques especially in areas of image compression have been devel- 

oped [3–5] . Based on CS theory, when signal is sparse in a trans- 

formed domain, a large amount of data is redundant. Hence, fewer 

measurements are required in the sparse domain. In the past sev- 

eral years, CS has been used in radar signal processing, wideband 

signal processing, etc. [6–8] . Originally, some researchers in the 

field of CS focus on reconstructing the compressed signals, detect- 

ing signals or estimating signal parameters [1,9] . 

Recently, compressive detection without signal reconstruction 

[7,10,11] has attracted more attentions. Instead of reconstructing 

signal completely, the authors partly reconstruct compressed sig- 

nals and then detect the signal when SNRs are high [9] . Some re- 

searchers propose the compressive detection algorithms based on 

traditional matched filter methods [7,12] . It is inefficient for an 

unknown-parameter signal detection that all exact information of 
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the signal must be provided before detection. In [10,11] , a signal 

detection algorithm based on Bayesian method is proposed, which 

needs the prior probability information of the sparse signal. In 

addition, unknown parameters of sparse signal detection are pro- 

posed in [13,14] . Random subspace signal and agnostic signal fol- 

lowing Gaussian distribution are studied. However, it is necessary 

to find the subspace basis matrix firstly. Next, the variance of the 

signal should be prior acknowledged. In [13] , the authors mainly 

research the random subspace signal with unknown variance. But 

the determined subspace basis matrix for sparse signal limits the 

application of signal detection. 

The main purpose of this letter is to detect compressed signal 

without signal reconstruction. For a given sparse signal, the po- 

sition of the maximum non-zero elements is fixed in the sparse 

vector, which is a wonderful feature for signal accumulating in the 

sparse domain. Furthermore, the maximum non-zero element am- 

plitude follows Rician distribution. When additive white Gaussian 

noise (AWGN) is projected in the transformed domain, the pro- 

jection vector(PV) whose position of maximum non-zero element 

presents a uniform distribution can be determined and every ele- 

ment of PV obeys Rayleigh distribution. Based on characteristics of 

the sparse representation, the method of accumulating signals in 

a sparse domain and comparing the distribution of the maximum 

non-zero element in PV are considered for designing the detector. 

Moreover, the performance of the detector is formulated and veri- 

fied by Monte Carlo computer simulations. The main advantage of 
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this proposed detector is that it only needs no-parameter informa- 

tion to detect low-SNR signal without reconstructing. 

The remaining of this letter is as follows: firstly, in Section 2 , 

we build the signal model. Secondly, we introduce the proposed 

detector and analyse the performance of the proposed detec- 

tor in Section 3 . In Section 4 , some simulations are provided to 

demonstrate the performance of the proposed detector. Finally, in 

Section 5 , we make a conclusion. 

2. Signal model 

A sparse signal can be represented as follows 

s = �x (1) 

where s is the signal to be detected. � represents a unit N × N ba- 

sis matrix and x ∈ R 

N × 1 is the sparse vector with K ( K < < N ) non- 

zero elements. When s is projected in �, the positions of non-zero 

elements are fixed and the amplitudes of non-zero elements repre- 

sent main ‘energy’ of the signal. Thus, the method of accumulation 

of the sparse vector element amplitudes (SVEA) is considered in 

the sparse field. 

The problem of traditional signal hypothesis detection model 

[13] is obtained {
H 0 : z n = w n , n = 1 , . . . , J 
H 1 : z n = s n + w n , n = 1 , . . . , J 

(2) 

where z n is the received signal polluted by AWGN, w n ∼
N( 0 N, 1 , σ

2 
n I N ) represents the received noise with a series of ob- 

servations n = 1 , . . . , J. A great amount of observation data is pro- 

cessed for uncompressed signal, which is difficult to be realized by 

hardware and waste of resources. Based on CS theory, when sig- 

nal is sparse in a transformed domain, fewer measurements are 

required in the sparse domain. Therefore, the compressive sensing 

hypothesis-testing problem is described from Eqs. (1) and (2) {
H 0 : y n = �w n , n = 1 , . . . , J 
H 1 : y n = �( �x n + w n ) , n = 1 , . . . , J 

(3) 

where �∈ R 

M × N is a real random Gaussian measurement matrix 

with i.i.d elements having zero mean and unit variance. We can 

acquire a sequence of y n and define PV as follows 

T n = ��H y n , n = 1 , . . . , J (4) 

Then, we obtain a matrix A ∈ R 

N × J 

A = 

[
T 1 T 2 · · · T J 

]
(5) 

where A represents a set of PV, and T j = [
α j ( 1 ) α j ( 2 ) · · · α j ( N ) 

]T 
. 

3. Compressive detection 

3.1. Proposed method 

The summation of non-zero elements in the sparse vector rep- 

resents main ‘energy’ of signal. AWGN is not sparse and projected 

in � still following Gaussian distribution [13] . If there is AWGN 

corrupted the signal, the real and imaginary parts of N − K zero 

elements of x n obey the following distribution 

Re 
(
α j ( n ) 

)
, Im 

(
α j ( n ) 

)
∼ N 

(
0 , 

σ 2 
n �

H ��H ��H �

2 

)
(6) 

where j = 1 , . . . , N − K and σ 2 
n means the variance of every ele- 

ment in PV. Next, we define σ 2 
�

= 

σ 2 
n �

H ��H ��H �
2 and the maxi- 

mum value of sparse vector x n is represented as αi . The distribu- 

tion of αi is described as ⎧ ⎨ 

⎩ 

Re ( αi ( n ) ) ∼ N 

(√ 

σ 2 
sr �

H �, σ 2 
�

)
Im ( αi ( n ) ) ∼ N 

(√ 

σ 2 
si 
�H �, σ 2 

�

) (7) 

where 
√ 

σ 2 
sr and 

√ 

σ 2 
si 

stand for the amplitude of Re ( αi ( n ) ) and 

Im ( αi ( n ) ) . �
H � ∼ χ2 

M 

follows chi-squared distribution with M de- 

grees of freedom [13] , and �H � = I N . Thus, the mean value of 

αi ( n ) is {
μsr = 

√ 

σ 2 
sr �

H � = M 

√ 

σ 2 
sr 

μsi = 

√ 

σ 2 
si 
�H � = M 

√ 

σ 2 
si 

(8) 

The signal energy σ 2 
s (σ

2 
s ≈ ε ∗ (σ 2 

sr + σ 2 
si 
)) , where ε is the maxi- 

mum weight coefficient when signal ‘energy’ distributes in a sparse 

domain. For convenience, we define the variance of αj ( n ) and αi ( n ) 

as 

σ 2 = σ 2 
n ∗ diag( �H ��H ��H �) = σ 2 

n ∗ M(M + N) (9) 

where diag ( w ) represents diagonal matrix. We can combine Eqs. 

(6) and (7) as below ⎧ ⎨ 

⎩ 

Re ( α j (n )) , Im ( α j (n )) ∼ N 

(
0 , σ 2 

)
Re ( αi (n )) ∼ N 

(
μsr , σ 2 

)
Im ( αi (n )) ∼ N 

(
μsi , σ

2 
) (10) 

Then, denote a new vector B ∈ R 

1 × N for convenience, which repre- 

sents the accumulation of PV in the sparse domain. 

B = 

∣∣mean 

(
A 

T 
)∣∣ = 

[ 
� 

α1 . . . 
� 

αN 

] 

= 

[ 

∣∣∣∣∣1 

J 

J ∑ 

k =1 

αk ( 1 ) 

∣∣∣∣∣ . . . 

∣∣∣∣∣1 

J 

J ∑ 

k =1 

αk ( N ) 

∣∣∣∣∣
] 

(11) 

where 
� 

α1 , . . . , 
� 

αN are i.i.d with J times observations as well. 

Next, we assume a new vector D ∈ R 

(N−K) ×1 to describe the N −
K zero elements of x n mentioned above. 

D = 

[ 
� 

α1 . . . 
� 

α j . . . 
� 

αN−K 

] 
(12) 

The variance of 
� 

α j is 

� 

σ
2 

n = 

σ 2 
n ∗ diag( �H ��H ��H �) 

2 J 
= 

σ 2 

2 J 
(13) 

The amplitude of 
� 

α j obeys the Rayleigh distribution and the 

maximum element in sparse vector 
� 

αi is follows the Rician dis- 

tribution [15] , and the probability density function (PDF) can be 

described as follows respectively ⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

f � 
α j 

( α) = 

α
� 
σ

2 

n 

exp 

(
− α2 

2 
� 
σ

2 

n 

)

f � 
αi 

( α) = 

α
� 
σ

2 

n 

exp 

(
− 1 

2 
� 
σ

2 

n 

( α2 + 

Mσs 

ε ) 

)
I 0 

(
Mσs 

ε 
� 
σ

2 

n 

) (14) 

where I n ( •) denotes the modified Bessel function of n th [15] . From 

Eqs. (10) and (14) , the mean value of 
� 

αi should be the largest than 

that of every element of D . So that the signal is considered to be 

represented if 
N−K ⋂ 

j=1 

(
� 

αi > 

� 

α j 

)
. The probability of P � 

α,D 
is expressed 

as 

P � 
α,D 

= P 

( 

N−K ⋂ 

j=1 

(
� 

αi > 

� 

α j 

)) 

(15) 
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