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a b s t r a c t 

I propose a complex-valued tensor factorization algorithm for audio-source separation to exploit not only 

amplitude but phase information of audio signals in the modulation frequency (MF) domain. The pro- 

posed algorithm is extended from complex non-negative matrix factorization, which is capable of de- 

composing an arbitrary complex matrix such as the complex spectrum in the acoustic frequency domain. 

The proposed method enables us to factorize an arbitrary complex tensor of order 3. The detailed perfor- 

mance of the proposed algorithm for single-channel source separation is investigated through numerical 

experiments. I examine the quantitative contributions of the MF domain and phase information exam- 

ined by additionally presenting three tensor factorization algorithms and using five objective indices for 

source separation. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Blind source separation is a problem that involves separating 

outsource signals from mixture signals without any information 

or with limited information about the sources and/or the mixing 

processes. The separation techniques have potential applications 

in various fields such as speech enhancement, polyphonic music 

transcription, the front-end of automatic speech recognition, and 

hearing aids. However, the source separation still remains an open- 

ended and challenging research topic. A lot of attempts to use the 

mixture data, training data, and/or physical properties of target 

sources have been presented on the basis of the assumption that 

the target sources cannot be directly known. 

One of commonly used methods for source separation is non- 

negative matrix factorization (NMF), which is capable of factoriz- 

ing an arbitrary non-negative matrix into a product of two non- 

negative matrices [1] . The approaches based on NMF has been sug- 

gested in the field of audio-signal processing since NMF had been 

applied to polyphonic music transcription [2] by using the ampli- 

tude spectrum in the acoustic frequency (AF) domain, which is 

calculated via the short-time Fourier transforms (STFTs). Numer- 

ous NMF-based schemes have been also studied for source sepa- 

ration by applying NMF to the amplitude spectrum in the AF do- 

main. For instance, it was shown that the NMF with Itakura–Saito 

(IS) divergence was suitable for the representation of music sig- 
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nals compared with the NMF with Euclidean or Kullback–Leibler 

divergence [3] . However, no complex spectrum including the phase 

spectrum in the AF domain can be decomposed by NMF due to its 

nonnegativity limitation. Thus, the phase information of signals is 

neglected in the NMF-based schemes, although prior studies have 

indicated that not only amplitude but also phase information has 

played a significant role in speech enhancement [4–8] . A complex 

NMF framework [9] was presented by Kameoka et al. for the pur- 

pose of addressing the mentioned limitation in NMF and taking ac- 

count of the phase spectrum in the AF domain. King and Atlas sim- 

ply called it “complex matrix factorization (CMF)” [10] and inves- 

tigated its detailed performance with their additionally proposed 

algorithms for single-channel source separation [10–12] . Moreover, 

the extension of multichannel for CMF is reported in [13,14] . 

Greenberg and Kingsbury proposed the spectrogram of a mod- 

ulation envelope, which was termed a “modulation spectrogram”, 

and it was demonstrated to be beneficial in representing speech 

signals [15] . Previous researches have proved that spectral pro- 

cessing like spectral subtraction in the modulation frequency (MF) 

domain could be more effective than the AF-domain schemes 

for speech enhancement [15–19] . Non-negative tensor factorization 

(NTF) [20] , which is extended from NMF, is one of the approaches 

utilized the MF domain for multichannel source separation [21] . In 

recent years, NTF-based algorithms with the modulation spectro- 

gram have been applied to single-channel audio source separation 

[22–24] . They showed that the modulation spectrogram was able 

to effectively represent redundant patterns across frequencies with 

similar features. The use of not only amplitude information but 
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also phase information in the MF domain methods would be de- 

sired to exploit more information on signals. However, NTF-based 

methods do not take the phase information of signals into account 

because they cannot factorize any complex-valued tensor such as 

complex spectrum including phase spectrum. To address this issue, 

we recently proposed a novel algorithm “complex tensor factoriza- 

tion (CTF)” and showed the preliminary results with simple exper- 

iments to demonstrate its validity for single-channel source sepa- 

ration [25] . CTF enables us to factorize an arbitrary complex tensor 

of order 3. Therefore, the separation approach based CTF can take 

account of not only the amplitude information but also the phase 

information in the MF domain. Furthermore, since the signal rep- 

resentation in the MF domain is calculated from two STFTs in the 

approach, it allows us to synthesize individual separated signals in 

the time domain via to two inverse STFTs (ISTFTs) without any loss 

of signal information through the MF and AF domains. 

In this paper, in order to investigate the detailed performance of 

CTF, the contributions of the MF domain and phase information to 

speech enhancement and source separation are evaluated by newly 

presenting three tensor factorization algorithms. Here, five indices 

for assessing the performance of source separation and speech en- 

hancement with four types of noises are used to more accurately 

prove the effectiveness of CTF in numerical experiments, 

The organization of this paper is as follows. Section 2 introduces 

the background of existing source separation methods using ma- 

trix factorizations and the MF domain. Section 3 describes our pro- 

posed methods for source separation. Numerical experiments on 

our evaluations and a discussion are presented in Sections 4 and 5 . 

Finally, the conclusions I drew on the basis of our experiments are 

given in Section 6 . 

2. Background 

2.1. Non-negative matrix factorization 

NMF is an approximation algorithm to factorize an arbitrary 

non-negative matrix into a product of two non-negative matri- 

ces and often provides the sparse solutions. The algorithm comes 

down to solving the following optimization problem (e.g. see the 

notation in Bronson and Depalle [26] ): 

Given : X ∈ R 

≥0 ,L ×M , K ∈ N 

+ , (1) 

Factorize : X � B W , (2) 

Minimize : 
∑ 

l,m 

∣∣∣X l,m 

−
∑ 

k 

B l,k W k,m 

∣∣∣2 

, (3) 

Subject to : B ∈ R 

≥0 ,L ×K , W ∈ R 

≥0 ,K×M , (4) 

where X represents an arbitrary non-negative matrix correspond- 

ing to the input data to be factorized by NMF. K , B , and W are 

the number of bases, the base matrix, and the weight matrix. Mul- 

tiplicative update method [1] is a well-known iterative algorithm 

to solve the optimization problem. The method provides the up- 

date rules for B and W via the iteration. The way that the number 

of bases K is determined remains one of the challenges in NMF. In 

general, K is empirically given by taking into account each data fea- 

ture, although the automatic relevance determination for its bases 

was suggested [27,28] . 

The objective function shown in Eq. (3) is described by the Eu- 

clidean distance, which is the simplest distance in NMF. However, 

as mentioned previously in Section 1 , it is known that IS distance 

in NMF is effective for the representation of audio signals. There- 

fore, the NMF with the following IS distance is used in the eval- 

uation for the speech enhancement and source separation in this 

paper: 

∑ 

l,m 

(
X l,m ∑ 

k B l,k W k,m 

− log 
X l,m ∑ 

k B l,k W k,m 

− 1 

)
. (5) 

Next, the application of NMF to single-channel source separa- 

tion is mentioned. Only mixture data y (t) ∈ R 

N mix , where y (t) = 

y 1 (t) + y 2 (t) , is assumed to be observed. Here, y 1 ( t ) is a clean sig- 

nal, and y 2 ( t ) is noise or another clean signal at time t. N mix repre- 

sents the number of time samples in the mixture data. The com- 

plex spectrum Y (ω I , τI ) in the AF domain for the mixture data y ( t ) 

is given by STFT: 

Y (ω I , τI ) = 

∫ ∞ 

−∞ 

y (t) w I (t − τI ) e 
− jω I t dt, (6) 

where ω I , τ I , and w I ( t ) indicate the frequency, frame in- 

dices, and window function in the STFT. The complex spectrum 

Y (ω I , τI )(= | Y (ω I , τI ) | e j arg Y (ω I ,τI ) ) consists of its amplitude spec- 

trum | Y (ω I , τI ) | and phase spectrum arg Y (ω I , τI ) . The amplitude 

spectrum | Y (ω 1 , τ1 ) | of mixture data is commonly used as the 

input data, which corresponds to the non-negative matrix X de- 

scribed in Eq. (1) , for the source separation based on NMF [2] . 

Therefore, the amplitude spectrum is factorized into two non- 

negative matrices by NMF. 

For the NMF-based source separation, we assume the existence 

of training data for the mentioned two sources y 1 and y 2 . Let 

the two training data be y 1 (t 1 ) ∈ R 

N s 1 and noise y 2 (t 2 ) ∈ R 

N s 2 with 

their time samples N s 1 and N s 2 , respectively. Thus, the complex 

spectra Y i (ω I , τI,i ) in the AF domain for the two training data 

( i = 1 , 2 ) are given by: 

Y i (ω I , τI,i ) = 

∫ ∞ 

−∞ 

y i (t i ) w I (t i − τI,i ) e 
− jω I t i dt i , (7) 

where τ I, i represents the frame indices for each source in the STFT. 

As Eq. (2) has shown, the amplitude spectrum of the training data 

can be factorized via NMF: 

X i ≡ | Y i (ω I , τI,i ) | � B i W i , (8) 

where B i and W i represent the base matrices and weight matrices 

factorized by NMF for the training data. Similarly, NMF is applied 

to the amplitude spectrum of the mixture data: 

X ≡ | Y (ω I , τI ) | � 

[
ˆ B 1 

ˆ B 2 

][ ˆ W 1 

ˆ W 2 

]
= 

[
ˆ X 1 

ˆ X 2 

]
. (9) 

Here, assuming that ˆ B i = B i and the initial elements in the 

weight matrices ˆ W i are random in the experiment of Section 4 , 

we can calculate the complex spectra of two separated signals 

with 

ˆ Y i (ω I , τI ) = 

ˆ X i (ω I , τI ) e 
j arg Y (ω I ,τI ) by using separated ampli- 

tude spectra ˆ X i (ω I , τI ) . Note that the phase spectra of the two sig- 

nals are assumed to be the same as those of the mixture data. Fi- 

nally, the two separated signals, ˆ y 1 (t) and ˆ y 2 (t) , can be estimated 

by carrying out the ISTFT of the complex spectra ˆ Y i (ω I , τI ) . Since 

NMF has a non-negative limitation for its input matrix, the phase 

spectrum which is a complex matrix in the AF domain cannot be 

estimated in NMF. 

2.2. Complex non-negative matrix factorization 

CMF has been proposed as an algorithm to overcome the limi- 

tation in NMF and factorizes an arbitrary complex matrix into two 

non-negative matrices and a complex-valued tensor of order 3 [9] . 

CMF is defined as the following optimization problem: 

Given : Y ∈ C 

L ×M , K ∈ N 

+ , λ ∈ R , 
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