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a b s t r a c t 

Consider a set of multiple, multimodal sensors capturing a complex system or a physical phenomenon 

of interest. Our primary goal is to distinguish the underlying sources of variability manifested in the 

measured data. The first step in our analysis is to find the common source of variability present in all 

sensor measurements. We base our work on a recent paper, which tackles this problem with alternating 

diffusion (AD). In this work, we suggest to further the analysis by extracting the sensor-specific variables 

in addition to the common source. We propose an algorithm, which we analyze theoretically, and then 

demonstrate on three different applications: a synthetic example, a toy problem, and the task of fetal 

ECG extraction. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The analysis of a physical phenomenon or some complex sys- 

tem at hand can often be made easier through the use of sev- 

eral sensors instead of a single complex one. The hope is that each 

of the sensors captures a different part of the convoluted system, 

while the fusion of all the information captures the global picture. 

This line of thinking has led to the abundance of multimodal and 

multi-sensory data in recent years and to an increased demand for 

algorithms that enable its processing and analysis [1] . A prime ex- 

ample for the above is medical diagnosis based on collected bed- 

side data, where one monitors a patient using various basic sen- 

sors, such as heart rate, pulse, blood pressure and oxygen level just 

to name a few, and attempts to diagnose the complex system at 

hand, that is the patient state, using the collected data. 

Elaborate systems, such as the one mentioned above, are usu- 

ally governed by many sources of variability. A central problem is 

then the analysis of latent sources, given measurements originating 

from several sensors of various types. Naturally, analyzing the mea- 

sured data in terms of its underlying sources of variability requires 

their extraction. Unfortunately, driving sources are often hidden in 

nonlinear unknown manners, thereby posing a true challenge to 

the analysis and to the extraction. 

In order to facilitate the extraction of the different sources 

of variability, we divide them into two conceptual categories: (i) 
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sources of variability common to all sensors; and (ii) variables 

unique to a specific sensor. In our work, we focus on a two step 

implementation where we first reveal the common variable. Once 

it is found, we extract the remaining sources of variability, i.e, 

the sensor-specific ones. Intuitively, our approach marginalizes the 

common variable, which is found in the first step, and then con- 

tinues to extract the sources of variability left in the filtered data. 

This simplifies our task, since we do not attempt to extract all the 

sources manifested in the data at once. 

In this paper, we use an unsupervised manifold learning ap- 

proach to address the problem. Various manifold learning algo- 

rithms were proposed in the literature over the years, [2–4] . The 

reader is referred to [5] for a thorough review of existing ap- 

proaches and their advantages. However, most of these classical 

methods assume that the data is captured by a single sensor, 

rather than in the multimodal multi-sensory setting we consider 

here. In this work, we focus on a particular paradigm – Diffusion 

Geometry, as presented in [6,7] . Within this framework, the alter- 

nating diffusion(AD) algorithm was recently proposed in [8,9] for 

the purpose of extracting the source of variability common to mul- 

tiple sensors. AD follows a recent line of papers that propose to 

use multiplications and manipulations of kernels for the purpose 

of fusing data from different sensors, e.g., [10–13] . Similarly to re- 

cently presented nonlinear methods, e.g., [14,15] , AD is shown to 

reveal only the common components among all processed sen- 

sors. Successful applications of AD to real measured data were 

demonstrated, e.g., in [16] for the task of sleep stage identifi- 

cation. Herein, we rely on AD and aim to extend it by further 

analyzing the measurements and finding the sensor-specific vari- 

ables. Our main motivation is that in some applications the sensor 
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specific variables are far more important than the common vari- 

able. Indeed, we show one real-life example of such an application 

– fetal Electrocardiography (ECG) extraction. 

Our main contribution in this work is a new algorithm, at- 

tempting to recover all the sources of variability manifested in a 

set of multi-sensory multimodal measurements. This operates by 

first extracting the common variable and then leveraging it in or- 

der to extract the remaining sensor-specific variables. We justify 

our proposed scheme theoretically, showing that it is guaranteed 

to find the underlying parametrizations under certain prescribed 

conditions. In addition, we demonstrate our method on a synthetic 

example, a toy problem and a real-life application. 

The strength of our algorithm is stemming from first extracting 

the common variable, a task which is easier to handle since the 

common variable is measured by both sensors, and only then try- 

ing to extract the sensor-specific variables. Other methods, such as 

those mentioned above, do not implement such a two-stage pro- 

cedure. This is also the weakness of our approach, since it relies 

on the successful extraction of the common variable. Other holistic 

methods, which aim to extract all the variables jointly, might not 

have this drawback. 

Herein, we focus on applications in which the readings are from 

two sensors. However, our algorithm can be readily extended to a 

multi-sensor scenario due to the capability of AD to extract the 

common variable, even when several sensors are involved. In this 

case, one would first extract the common variable and then pro- 

ceed to the sensor-specific variables by operating on each of the 

sensors independently. Recent works [17–19] extend the problem 

definition for more than two sensors by explicitly searching for not 

just the common and the sensor-specific variables, but also vari- 

ables common to every possible subset of sensors. One could en- 

vision an extension of our algorithm, where AD is applied to every 

subset of the sensors, enabling the extraction of the correspond- 

ing sensor-specific variables. However, this extension is beyond the 

scope of this work. 

In recent years many approaches were proposed for the analy- 

sis of multi-modal multi-sensory data. For instance, the works of 

[20,21] suggested to learn non-parametric mapping functions that 

transform different modalities into a shared latent space. The work 

of [22] considered the problem where one is given multiple un- 

labeled views of some data and the task is to learn some useful 

representations, using deep learning, that could be used in test 

stage when only one view is available. In [23] , the authors stud- 

ied the problem of semantic retrieval, where documents from dif- 

ferent modalities need to be ranked according to their relevance 

to a certain query. All of these methods tackle different problems 

that arise in the context of multi-modal multi-sensor data anal- 

ysis. However, none of these focus on the setting we consider in 

this work – the extraction of the sensor-specific variable. 

This paper is organized as follows. In Section 2 we introduce 

formally the problem we address, and in Section 3 we review the 

diffusion maps and AD algorithms. In Section 4 we present the 

proposed method and in Section 5 we analyze it theoretically. In 

Section 6 we test our method on a synthetic example, a toy prob- 

lem and a real-life application – the extraction of fetal ECG. We 

conclude this paper in Section 7 . 

2. Problem formulation 

Consider three latent random variables X, Y and Z in R 

d x , R 

d y 

and R 

d z , respectively, which are jointly distributed according to 

some probability density function(PDF) denoted by P ( X, Y, Z ). Fol- 

lowing the work in [8] , we assume that the variables Y and Z are 

independent given X , i.e., the joint PDF can be written as follows: 

P (X, Y, Z) = P (Y | X ) P (Z| X ) P (X ) , (1) 

where P ( X ) is the marginal PDF of X , and P ( Y | X ) and P ( Z | X ) are the 

conditional PDFs of Y and Z given X , respectively. When measur- 

ing a system of interest, a measurement instance is defined by the 

triplet ( x i , y i , z i ), which is a realization sampled from P ( X, Y, Z ). We 

do not have access to the latent variables; instead, we have two 

sensors observing the system at hand through two unknown obser- 

vation functions given by g ( x i , y i ) and h ( x i , z i ). We assume g and h 

are smooth and locally invertible bilipschitz functions. Let { s (1) 
i 

} N 
i =1 

and { s (2) 
i 

} N 
i =1 

denote two sets of N measurement samples, taken si- 

multaneously from the two sensors, such that s (1) 
i 

= g(x i , y i ) ∈ R 

d 1 

and s (2) 
i 

= h (x i , z i ) ∈ R 

d 2 , where { (x i , y i , z i ) } N i =1 
are N realizations 

of the system’s hidden variables. In other words, we have hidden 

realizations ( x i , y i , z i ) of three underlying variables and two sen- 

sor observations s (1) 
i 

and s (2) 
i 

; x i is the common latent variable 

between the two observations, whereas y i and z i are two sensor- 

specific variables. 

Given the two sets of measurement samples, the work in 

[8] showed that a method based on AD operators extracts a pa- 

rameterization of the common variable X . In this work, we aim 

to further the analysis and extract a parametrization of the vari- 

ables Y and Z as well. Such a complementing capability enables us 

to fully parameterize all the hidden variables underlying the mea- 

surements of the system of interest. 

Although the analysis and methods used in this paper will be 

carried out from a different standpoint, the factorization in (1) can 

be used to explain the main concept. Intuitively, the extraction of 

the common variable X in [8] can be viewed as a marginaliza- 

tion operator applied to the joint probability P ( X, Y, Z ) obtaining 

P ( X ). In this work, we devise another operator which uses P ( X ) 

to construct the conditional probabilities P ( Y | X ) and P ( Z | X ). Then, 

given P ( Y | X ) and P ( Z | X ), it marginalizes the variable X and obtains 

a parametrization of the sensor-specific variables Y and Z . 

3. Preliminaries 

3.1. Diffusion maps 

Diffusion maps [6,7] is a data-driven nonlinear dimensionality 

reduction algorithm. Given a set of N measurements { u i } N i =1 
, the 

method constructs an affinity matrix W of size N × N , whose ( i, j )th 

entry is given by 

W i, j = exp 

( 

−
∥∥u i − u j 

∥∥2 

ε

) 

, ∀ i, j = 1 , . . . , N. (2) 

Intuitively, W can be interpreted as a weight matrix of a graph 

with N vertices, where the coefficient ε > 0 dictates the sparsity of 

the edges. If ε is small, most edges have a negligible, close to zero 

weight and the graph is effectively sparse, whereas if ε is large, 

most edges are assigned with non negligible weights and the graph 

is dense. The constant ε is usually chosen according to the data at 

hand, and in this work we set it using the method suggested in 

[8] . Therein, the constant was chosen to be ε = 

√ 

εi ε j , where ε i a 

scaling constant corresponding to the i th vertex. In particular, ε i is 

chosen to be the mean squared distance from the i th vertex to its 

k nearest neighbors. 

The next step is to normalize the affinity matrix W , which re- 

sults in the matrix K . Various normalization procedures have been 

suggested in the literature [24,25] , each having a different interpre- 

tation when analyzed theoretically. In this work, K is constructed 

by dividing each column of W by its sum, yielding a column- 

stochastic matrix. As a result, K can be viewed as a transition prob- 

ability matrix of a Markov chain on the graph. An example for a 

different approach using such a construction is spectral clustering 

[26] , where a similar kernel normalization is used. Specifically, di- 
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