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a b s t r a c t 

Parameter estimation of a high-order polynomial phase signal (PPS) is considered in this paper. We pro- 

pose a method to estimate phase parameters more efficiently and accurately. In the proposed method, 

we define an operator referred to as non-uniform sampled reducing-order operator (NURO) to reduce the 

order of a polynomial phase by half, when the order of PPS is even. By combined using NURO and phase 

differentiation (PD) operators, the PPS order is reduced to one, i.e., the PPS degenerates into a complex 

sinusoid. Then, the parameter estimation can be done by jointly using fast Fourier transform (FFT) and 

one-dimensional search. Compared with the traditional methods, the reducing-order procedure in the 

proposed method has lower-order nonlinearities. Simulation results show that the proposed method out- 

performs the hybrid CPF-HAF and HAF in both mean square error (MSE) and the threshold when the PPS 

order is higher than 5. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Polynomial phase signal (PPS) has widely application in the 

parameter estimation and target detection in radar, sonar, com- 

munication, and various nature signal analysis [1–7] . To estimate 

the parameters of PPS, the maximum likelihood (ML) estimation 

was proposed in 1960s. Although it performs well in the sense of 

mean square error (MSE), it suffers a heavy computational burden 

due to the multidimensional search. Therefore, methods with low 

computational burden attract more and more attention. The high- 

order ambiguity function (HAF) [2] , which is realized by a one- 

dimensional search, develops a phase differentiation (PD) tech- 

nique to reduce the PPS order. By applying PD once, PPS order can 

be decreased by one. However, as to high-order PPS, many times 

of using PD leads to high-order nonlinearities, which increases the 

number of noise influenced terms. Therefore, the HAF algorithm 

has a poor performance at low signal-to-noise ratio (SNR). 

To estimate the third order phase parameter, some time- 

frequency rate representations are proposed, for example, the cubic 

phase function (CPF) [3] , the high resolution time-frequency rate 

representation (HR-TFRR) and their extensions [4,5] . By combining 

the CPF and HAF, the hybrid CPF-HAF is proposed in [6] to esti- 

mate parameters of high-order PPSs. Compared with the HAF, the 

hybrid CPF-HAF algorithm requires two PDs less which leads to rel- 
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atively lower MSE and lower SNR threshold. Although the hybrid 

CPF-HAF improves the estimate performance, the order of nonlin- 

earities grows exponentially with the increase of the PPS order. 

Expect the hybrid CPF-HAF algorithm, the quasi-maximum- 

likelihood (QML) estimator and its extensions [8–12] are proposed 

to improve the performance at low SNR. By utilizing the robustness 

of the short-time Fourier transform (STFT) to noise influence, the 

QML based algorithm achieves a lower SNR threshold and a lower 

MSE than the HAF. However, the improvement is achieved at the 

cost of greatly increased computational complexity. 

In this paper, we propose a new method to estimate the phase 

parameters of a high-order PPS more efficiently and accurately. In 

the proposed method, we define the kernel in non-uniform sam- 

pled cubic phase function (NU-CPF) [13,14] as a reducing-order op- 

erator referred to as non-uniform sampled reducing-order operator 

(NURO). When the PPS order is even, NURO can decrease the PPS 

order by half. Utilizing this property, we perform a multistep pro- 

cedure combining the PD and NURO operator to reduce the order 

of the PPS. Instead of using PD repeatedly in the HAF based ap- 

proach, this procedure selects and uses either PD or NURO opera- 

tor in each stage. When the PPS order is odd, we perform PD and 

reduce the PPS order by one. On the other hand, if the PPS order is 

even, we perform NURO and reduce the PPS order by half. In this 

manner, by using the PD or NURO repeatedly, we can transform a 

high-order PPS into a complex sinusoid with fewer bilinear opera- 

tions i.e., involving lower-order kernel nonlinearities. Since the fre- 

quency of the sinusoid is proportional to the highest-order phase 
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parameter, the estimate of highest-order phase parameter can be 

done efficiently by jointly using fast Fourier transform (FFT) and 

one dimensional search. The proposed algorithm outperforms tra- 

ditional estimate algorithms for high-order PPSs in MSE and signal- 

to-noise (SNR) threshold. 

2. PD and NURO operator 

2.1. PD operator 

Consider a discrete PPS defined as 

x (n ) = s (n ) + w (n ) , − N/ 2 ≤ n ≤ N/ 2 

s (n ) = b 0 exp ( jφ(n ) ) = b 0 exp 

(
j 

P ∑ 

i =0 

a i (n �) 
i 

)
, 

(1) 

where φ( n ) is the signal phase, P is the order of the polyno- 

mial in the signal phase, � is the sampling interval, w is com- 

plex zero-mean white Gaussian noise with variance σ 2 , and { b 0 , 

a 0 , a 1 , a 2 , ..., a P } are real-valued parameters of the PPS. The length 

of the sequence is N + 1 , where N is even. The SNR is defined as 

SNR = b 0 
2 
/ σ 2 . In this paper, we assume b 0 and a 0 are known con- 

stant. The problem is to estimate parameters { a 1 , a 2 , ..., a P } from 

x ( n ). 

The PD operator is used in the HAF to decrease the order of the 

polynomial in signal phase. It is defined in [2] as 

P D τ [ s (n ) ] = s ∗(n − τ ) s (n + τ ) 

= b 2 0 exp 

(
j 

(
2 

P−1 ∑ 

p=0 

n 

p 
� (P−p+1) / 2 � ∑ 

l=1 

(p+2 l−1)! 
p!(2 l−1)! 

�p+2 l−1 τ 2 l−1 a p+2 l−1 

))
= b 2 0 exp 

(
j 
(
ϕ 0 (n ) + θ1 n 

P−1 
))

, 

(2) 

where θ1 = 2 P �P τa P , ϕ0 ( n ) is a polynomial including lower-power 

terms of n , and � · � denotes the rounding up operation. From 

(2) we can see that the resulting signal phase is a polynomial with 

respect to n , and the order of the PPS is decreased by one. Know- 

ing that the original coefficient of the highest-power term n P in 

the phase of s ( n ) is θ0 = �P a P , the coefficient is changed by PD 

operator according to 

θ1 = 2 P τθ0 . (3) 

In the HAF algorithm, the property of PD is utilized to reduce 

the order of the polynomial in the signal phase. The HAF algorithm 

can be described as follows. First, perform PD repeatedly until the 

PPS is transformed into a complex sinusoid: 

P D 

1 
τ1 

[ x (n ) ] = x ∗(n − τ1 ) x (n + τ1 ) 

P D 

2 
τ1 τ2 

[ x (n ) ] = 

{
P D 

1 
τ1 

[ x (n − τ2 ) ] 
}∗

P D 

1 
τ1 

[ x (n + τ2 ) ] 

. . . 

P D 

P−1 
τ1 τ2 ... τP−1 

[ x (n ) ] = 

{
P D 

P−2 
τ1 τ2 ... τP−2 

[ x (n − τP−1 ) ] 
}∗

P D 

P−2 
τ1 τ2 ... τP−2 

×[ x (n + τP−1 ) ] . (4) 

Then the highest-order parameter can be estimated by 

ˆ a P = 

arg max 
�

∣∣∣∣∑ 

n 
P D 

P−1 
τ1 τ2 ... τP−1 

[ x (n ) ] exp (− j�n ) 

∣∣∣∣
2 

P−1 �P P ! 
P−1 ∏ 

i =1 

τi 

. (5) 

The next lower-order parameter a P−1 can be estimated by 

performing the same procedure on the demodulated signal 

x (n ) exp (− j a P �
P n P ) . From (4) it can be seen that for a P th-order 

PPS, the HAF algorithm requires P − 1 times of PD, i.e., the HAF has 

a kernel of 2 P−1 th-order nonlinearities, where the order of non- 

linearities equals to the number of signal factors in the product 

kernel [14] . When estimating the parameters of high-order PPSs, 

the order of kernel nonlinearities is very high for HAF algorithm, 

which leads to a high SNR threshold [12,15] . 

2.2. NURO operator 

For third order PPS, a technique called the CPF is proposed in 

[3] . It is defined by 

CP F (n, �) = 

∑ 

k 

x (n + k ) x (n − k ) exp (− j�k 2 ) . (6) 

The CPF has an interpretation as a time-frequency rate repre- 

sentation. Thus, the third and second-order parameters of the PPS 

can be estimated by evaluating the function at two different in- 

stants: 

ˆ a 3 = 

arg max 
�

| CP F ( n 1 , �) | − arg max 
�

| CP F (0 , �) | 
2 n 1 �

, (7) 

ˆ a 2 = arg max 
�

| CP F (0 , �) | . (8) 

To improve the performance of the non-linear technique based 

algorithm at low SNR, the idea of reducing the order of nonlineari- 

ties is brought up in [18] and [19] . Basing on CPF and PD operator, 

the hybrid CPF-HAF is also proposed in [6] . This algorithm applies 

P − 3 times of PD to reduce the order of polynomial in phase to 

3, and then CPF is used to estimate the parameters. The result- 

ing order of kernel nonlinearities is 2 P−2 . Compared with HAF, it 

uses two PDs less, therefore, the lower-order kernel nonlinearities 

leads to a better performance in the MSE and SNR threshold [6] . 

However, the order of kernel nonlinearities still grows exponen- 

tially with the increase of the PPS order. Thus, the SNR threshold 

is still very high when estimating parameters of high-order PPS. 

It can be seen from (6) that, in the CPF, a bilinear operator is 

applied to the PPS, which can be written as 

CP [ s (n ) ] = s (n − m ) s (n + m ) . (9) 

Substituting a P th-order PPS described in (1) into (9) yields 

CP [ s (n )] = b 0 exp 

( 

j 
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) 
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) 
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) 
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= b 2 0 exp 
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2 φ2 l (n ) 

(2 l)! 
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2 l 
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, (10) 

To reduce the computational complexity of CPF, the NU-CPF is 

proposed in [13] , where the bilinear operator is modified so that 

the CPF can be performed by using FFT. We name the modified 

kernel in the NU-CPF as the NURO operator, which is given by 

NUCP [ s (n )] = s (n − √ 

cm ) s (n + 

√ 

cm ) . (11) 

Here, we exploit its usage of reducing PSS order. Similar to the 

derivation in (10) , applying the NURO operator to a P th-order PPS 
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