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a b s t r a c t 

This paper investigates the frequency estimation problem in all dimensions within the recent gridless- 

sparse-method framework. The frequencies of interest are assumed to follow a prior probability distri- 

bution. To effectively and efficiently exploit the prior knowledge, a weighted atomic norm approach is 

proposed in both the 1-D and the multi-dimensional cases. Like the standard atomic norm approach, the 

resulting optimization problem is formulated as convex programming using the theory of trigonomet- 

ric polynomials and shares the same computational complexity. Numerical simulations are provided to 

demonstrate the superior performance of the proposed approach in accuracy and speed compared to the 

state-of-the-art. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In this paper we investigate the frequency estimation problem 

that has wide applications in radar, sonar, wireless communi- 

cations, seismology, astronomy and so on. Consider the one- 

dimensional (1-D) case as an example, in which f k ∈ T := [0 , 1] , 

k = 1 , . . . , K denote the unknown (normalized) frequencies of 

interest ( K is unknown as well). In the absence of noise, we have 

the following data model: 

y o = 

K ∑ 

k =1 

a ( f k ) s k , (1) 

where a ( f ) = [1 , e i 2 π f , . . . , e i 2 π(N−1) f ] T ∈ C 

N denotes a complex 

sinusoid with frequency f , and s k ∈ C is the amplitude of the 

k th sinusoid. Suppose that we only observe M out of the N en- 

tries of y o indexed by � ⊂ { 1 , . . . , N} , which form a subvector 

y o 
�

∈ C 

M . Given y o 
�

, our objective is to recover the frequencies f k , 

k = 1 , . . . , K. This problem setup is known as the compressive data 

case in the sense that only part of the full data y o is observed. 

In the multi-dimensional (M-D) case, the problem can be stated 

similarly, which is deferred to the main context. 

The difficulty of the frequency estimation problem underlies 

in the fact that the observed data are highly nonlinear functions 

of the frequencies. The most prominent conventional approach to 
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1-D frequency estimation is known as subspace-based methods 

such as MUSIC and ESPRIT. Readers are referred to [1] for the 

review. To circumvent the nonlinearity, in these methods the 

frequencies are estimated from the signal subspace of the data 

covariance matrix, rather than from the data themselves. They 

have also been extended to the M-D, especially the 2-D case (see, 

e.g., [2,3] ). 1 However, since the subspace-based methods require 

a data covariance estimate, their application is challenging in the 

compressive data case in which this estimate is difficult to obtain. 

Moreover, the subspace methods require the knowledge of the 

model order (a.k.a. the number of frequencies). 

In the past two decades or so, a class of sparse methods have 

been developed for frequency estimation thanks to the devel- 

opment of sparse representation and compressed sensing. These 

method exploit the signal sparsity, which arises from the fact that 

the number of sinusoids K is small. To overcome the nonlinearity, 

the continuous frequency domain is gridded/discretized into finite 

discrete grid points, and the nonlinear parameter estimation 

problem is then transformed approximately as the recovery of 

a discrete sparse signal from an underdetermined linear system. 

Note that gridding in the frequency domain was also necessary 

since the early sparse representation techniques can only deal 

with the recovery of discrete signals. The gridding however results 

in the so-called grid mismatch problem that leads to performance 

1 Note that the subspace-based methods are based on the Vandermonde decom- 

position of Toeplitz covariance matrices, which dates back to the early 20th century 

in the 1-D case [4] and was proven in the M-D case in the recent work [5] . 
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degradation and difficulties for theoretical analysis [6,7] . These 

drawbacks have recently been resolved in gridless sparse methods, 

specifically, those based on the atomic norm—a continuous analog 

of the � 1 norm [8] —and covariance fitting (see [9–11] on the 1-D 

case and [5,12,13] on the M-D case). In gridless sparse methods, the 

frequencies are dealt with directly in the continuous domain, com- 

pletely resolving the grid mismatch problem; the resulting seem- 

ingly nonconvex atomic norm and covariance fitting optimization 

problems are cast as convex optimization problems; and theoret- 

ical guarantees are provided conditioning on that the frequencies 

are sufficiently separated. Readers are referred to [14] for an 

overview of both the grid-based and the gridless sparse methods. 

This paper is motivated by practical applications in which prior 

knowledge on the frequencies can be known. For example, due 

to path loss the delay/range information of a detectable aircraft 

might be estimated a priori . Prior information of the Doppler 

frequency can be obtained given the characteristic speed. In un- 

derwater channel estimation, the frequency parameters of interest 

can reside in a known small interval [15] . To model various kinds 

of prior knowledge, in this paper, we assume that the 1-D or the 

M-D frequencies of interest follow a prior probability distribution 

(note that K is still unknown). 

The use of prior distribution for improving estimation perfor- 

mance is common in the literature on statistical estimation and 

is typically accomplished based on statistical inference, which 

however needs the value of K and often requires nonconvex 

optimization due to the nonlinear nature of the problem [16] . 

Differently from the existing methods, we try to propose a de- 

terministic convex optimization method. Concretely, we propose 

a weighted atomic norm approach in which the prior knowledge 

is encoded in a sophisticatedly chosen weighting function that is 

further used to specify the preference of frequencies. We show 

that a careful choice of the weighting function enables us to cast 

the resulting weighted approach as convex programming and to 

solve it using off-the-shelf solvers. While the proposed method in 

the 1-D case was presented in our conference publication [17] , we 

show in this extended journal paper that similar techniques can 

be utilized to propose a method in the M-D case. 

1.1. Related work 

The paper [18] studied the 1-D case and assumed that the 

model order K is known and each frequency follows a prior 

distribution. The maximum a posterior (MAP) estimator was 

derived by using nonconvex optimization, which suffers from local 

convergence. 

Weighted optimization is common in the literature on com- 

pressed sensing (in the discrete setting) for exploiting prior 

knowledge of the support of the sparse signal. To do so, a subset 

of the support is usually assumed known [19] . But results are rare 

in case when the prior knowledge is described in a probabilistic 

manner. Related papers include [20,21] , in which weighted � 1 
norm methods were studied given the probability of each entry 

of the sparse signal being nonzero (note that the number of 

nonzeros, or K , is thus approximately known). 

To date, the weighted atomic norm has been studied by two 

research groups for 1-D frequency estimation. In our previous 

work [22] , no prior knowledge but sparsity was assumed and a 

majorizaiton-minimization algorithm was implemented based on 

a nonconvex objective function, resulting in a reweighted atomic 

norm method that iteratively enhances sparsity and resolution 

compared to the atomic norm. While the weighting function in 

[22] is automatically determined in the iterative algorithm, it is 

sophisticatedly designed in this paper to efficiently exploit the 

prior knowledge. 

In [23] , the so-called constrained atomic norm method, which 

is interpreted as the weighted atomic norm in this paper, was 

proposed to deal with a class of piecewise-constant prior distribu- 

tions. Inspired by [22,23] , a new reweighted atomic norm method 

was introduced in [24] in the absence of prior knowledge. Note 

that, compared to [23] , the approach of this paper can deal with 

more general priors. When working with the specialized priors in 

[23] , the proposed convex optimization method has significantly 

fewer constraints and thus lower computational complexity. In 

fact, it shares the same computational complexity as the standard 

atomic norm method in which prior knowledge is not considered. 

It is shown via numerical simulations that the proposed method 

can be an order of magnitude faster than the method in [23] , with 

comparable accuracy. Finally, the presented solution can be applied 

to the M-D case. To the best of our knowledge, this is the only con- 

vex optimization method for M-D frequency estimation which can 

exploit the prior knowledge and work in the continuous domain. 

1.2. Paper organization 

The rest of this paper is organized as follows. Section 2 intro- 

duces the problem statement and presents the proposed solution 

in the context of general priors in the 1-D case. The proposed 

solution is also specialized there to the case of block priors and 

compared to the method in [23] . Section 3 extends the presented 

solution from the 1-D to the M-D case. Section 4 provides numer- 

ical simulations to demonstrate the performance of the proposed 

solution. Section 5 concludes this paper. 

2. Proposed solution: the 1-D case 

2.1. Problem statement 

Let F ∈ [0, 1] be a random variable that describes the 1-D 

frequencies { f k } and p ( f ) be the probability density function (pdf) 

of F . The objective is to recover the frequencies { f k } given the data 

model in (1) , the observed data y o 
�

and the prior distribution p ( f ). 

2.2. Preliminaries 

We first recall the atomic norm method for frequency estima- 

tion in which only the signal sparsity is exploited. Note that y o 

in (1) can be written as a linear combination of K atoms in the 

following set of atoms: 

A = { a ( f, φ) = a ( f ) φ : f ∈ T , φ ∈ S 
1 } , (2) 

where S 
1 = { φ ∈ C : | φ| = 1 } denotes the unit circle. Following 

from the literature on sparse representation, we attempt to solve 

the following optimization problem: 

min 

y 
‖ y ‖ A , 0 , subject to y � = y o �, (3) 

where ‖ y ‖ A , 0 denotes the atomic � 0 norm that is defined as the 

smallest number of atoms composing y —a continuous analog of 

the � 0 norm. Note that, by using the � 0 norm, the signal sparsity 

is exploited to the greatest extent possible. But unfortunately, 

(3) is a rank minimization problem that cannot be easily solved 

[10] . Therefore, its convex relaxation—the following atomic norm 

problem is considered instead [9,10] : 

min 

y 
‖ y ‖ A , subject to y � = y o �, (4) 

where ‖ y ‖ A denotes the atomic norm that is defined as: 

‖ 

y ‖ A := inf 
f k ,φk ,c k > 0 

{ ∑ 

k 

c k : y = 

∑ 

k 

c k a ( f k , φk ) 

} 

. (5) 
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