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a b s t r a c t 

This paper addresses the radar waveform design problem in spectrally crowded environments. The aim 

is to maximize the output signal-to-interference-plus-noise ratio (SINR) of the waveform under spec- 

tral and similarity constraints. The existing algorithm proposes to tackle such a problem via semidefinite 

relaxation (SDR) and rank-one decomposition, resulting in high complexity and limited applications. Mo- 

tivated by the decomposability and superior convergence properties of alternating direction method of 

multipliers (ADMM), we propose a novel algorithm to tackle the waveform optimization problem. Since 

simpler subproblems are involved at each iteration and they can be tackled efficiently, the proposed al- 

gorithm has a much lower computational complexity than the existing algorithm. Numerical examples 

demonstrate the effectiveness of the proposed algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The radio frequency (RF) electromagnetic spectrum is widely 

used in diverse applications including radar, communications, and 

navigation. In order to achieve improved target detection and pa- 

rameter estimation performance, modern radar systems require 

large bandwidths. Meanwhile, the high-rate mobile broadband ser- 

vices also call for increased amount of bandwidth. Since the RF 

spectrum is a limited resource, the growing demand for more ac- 

cess to the spectrum by radar and communication systems leads 

to serious spectrum congestion problems. As a result, current radar 

systems face significant challenges to operate properly in spectrally 

crowded environments [1] . 

Several approaches have been developed to enhance the perfor- 

mance of radar systems in spectrally crowded environments. One 

possible means is to adapt the probing waveforms intelligently 

such that the adapted waveforms are compatible with the elec- 

tromagnetic environments [2–14] . In particular, the optimization of 

waveforms under spectral constraints has received considerable in- 

terest in recent years. In [2] , the authors proposed an algorithm to 

devise sparse frequency waveforms and receive filters. The devised 

waveforms could evenly distribute its spectral energy into the al- 

lowed bands and form wide notches in the stopbands. In [3] , the 
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authors proposed an iterative algorithm, called SHAPE, to devise 

waveforms with arbitrary spectral shapes. They also proposed a 

cyclic method to synthesize waveforms with both stopband and 

correlation constraints [4,5] . Different from the aforementioned 

works, the authors in [6–11] considered the waveform design prob- 

lem via maximizing the output signal-to-interference-plus-noise- 

ratio (SINR), under the spectral and the similarity constraints on 

the waveforms. Typically, the associated optimization problems are 

non-convex. Nevertheless, it was shown in [6] that, when only one 

spectral compatibility constraint was enforced, the corresponding 

waveform design problem was a hidden-convex problem, which 

could be tackled based on semidefinite relaxation (SDR) and rank- 

one decomposition. However, the involved computational complex- 

ity is very high, and might be prohibitive for real-time waveform 

designs. Thus, computationally more efficient methods need to be 

developed. 

In this paper, we revisit the waveform design problem in 

[6] and propose alternating direction method of multipliers 

(ADMM) to tackle the optimization problem. The decomposabil- 

ity of ADMM enables the proposed approach to only involve sev- 

eral quadratic programming (QP) subproblems during the itera- 

tions. More importantly, we can find efficient solutions to them. 

Owing to the simplicity of the proposed solution at every iteration 

and the superior convergence properties of ADMM, the proposed 

algorithm has a significantly lower computational complexity than 

the SDR-based approach. 

http://dx.doi.org/10.1016/j.sigpro.2017.08.003 
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2. Problem formulation 

Let s ∈ C 

N×1 denote the baseband discrete-time probing wave- 

form of a radar system, with N representing the code length. Con- 

sider the following signal model: 

y = γT s + n , (1) 

where y stands for the received signal of the cell under test (CUT), 

γ T is the target amplitude, and n denotes the (signal-independent) 

interference. It is well known that the target detection perfor- 

mance in Gaussian interference is closely related to the output 

SINR, and maximizing SINR leads to the largest probability of de- 

tection. Assume that n can be modeled as a complex-valued circu- 

larly symmetric Gaussian random vector, with zero-mean and co- 

variance matrix M . Then the output SINR can be defined as 

SINR = | γT | 2 s H Rs , (2) 

where R = M 

−1 and ( · ) H denotes conjugate transponse. Thus, we 

can seek to devise waveforms that maximize the output SINR to 

achieve the optimal detection performance. 

Next we consider some practical constraints on the waveform 

of a radar system operating in a spectrally crowded environment. 

First, without loss of generality, we impose an energy constraint 

on the transmitted waveform, i.e., s H s = 1 ; in addition, we enforce 

a similarity constraint on the waveform, i.e., ‖ s − s 0 ‖ 2 ≤ ε, where 

s 0 is the reference waveform, ε is a user-specified parameter which 

rules the similarity region, and ‖ · ‖ stands for the Euclidean norm. 

As shown in [15] , enforcing a similarity constraint on the wave- 

form controls the shape of its ambiguity function, partially cir- 

cumventing the drawbacks including significant modulus variation, 

poor range resolution, and/or high peak side lobe levels. Finally, to 

ensure spectral compatibility with the surrounding licensed radia- 

tors, we have to shape the spectrum of the radar waveform. To this 

end, we impose a spectral constraint on the waveform: 

s H R I s ≤ E I , (3) 

where E I denotes the maximum allowed interference that can be 

tolerated by the licensed radiators, R I = 

∑ K 
k =1 w k R 

k 
I 
, K represents 

the number of licensed radiators, w k is the coefficient associated 

with the k th radiator, 

R 

k 
I (m, l) = 

⎧ ⎨ 

⎩ 

f k 2 − f k 1 , m = l 

e j2 π f k 2 (m −l) − e j2 π f k 1 (m −l) 

j2 π(m − l) 
, m � = l 

f k 
1 

and f k 
2 

denote the lower and upper normalized working fre- 

quencies of the k th radiator, respectively. 

Summing up the above results, we formulate the waveform op- 

timization problem in a spectrally crowded environment as fol- 

lows: 

max 
s 

s H Rs , s.t. s H s = 1 , ‖ s − s 0 ‖ 

2 ≤ ε, s H R I s ≤ E I . (4) 

The optimization problem in (4) is a quadratically constrained 

quadratic programming (QCQP) problem. Since the objective func- 

tion is convex with respect to (w.r.t.) s and the energy constraint 

is non-convex, the problem in (4) is difficult to solve. In [6] , resort- 

ing to the framework of SDR and exploiting the hidden convexity 

of the problem, the authors showed that the optimal solution of 

(4) can be obtained within polynomial time. Particularly, the pro- 

posed algorithm therein involved solving a semidefinite program- 

ming (SDP) problem (with a complexity of O ( N 

4.5 ) log ( ζ ), where ζ
is the solution accuracy [16] ), and a rank-one decomposition pro- 

cedure synthesizing the optimal waveform from the solution of the 

SDP (with a complexity of O ( N 

3 ) [17] ). Thus, the computational 

complexity of the proposed algorithm is quite high, which limits 

its applications. 

3. Algorithm design 

Motivated by the recent success of ADMM in large-scale opti- 

mizations [18–20] , we propose a new algorithm to solve the opti- 

mization problem in (4) . Before presenting the proposed algorithm, 

we first rewrite the problem in (4) as 

min 

s 
s H Qs , s.t. s H s = 1 , ‖ s − s 0 ‖ 

2 ≤ ε, s H R I s ≤ E I , (5) 

where Q = μI − R and μ is a positive constant to ensure Q � 0 . 

Considering that ADMM methods focus on real-valued prob- 

lems, we define s̆ = [ � (s T ) 	 (s T )] T , s̆ 0 = [ � (s T 
0 
) 	 (s T 

0 
)] T , 

Q̆ = 

[� (Q ) −	 (Q ) 

	 (Q ) � (Q ) 

]
, ̆R I = 

[� (R I ) −	 (R I ) 

	 (R I ) � (R I ) 

]
, 

where ( · ) T stands for transpose, � ( · ) and 	 ( · ) denote the real and 

imaginary parts, respectively. Then we can obtain s H Qs = ̆s T Q̆ ̆s , 

s H s = ̆s T s̆ , s H R I s = ̆s T R̆ I ̆s , and ‖ s − s 0 ‖ 2 = ‖ ̆s − s̆ 0 ‖ 2 . 
Hence, we can reformulate (5) as the following real-valued op- 

timization problem: 

min 

s̆ 
s̆ T Q̆ ̆s , s.t. s̆ T s̆ = 1 , ‖ ̆s − s̆ 0 ‖ 

2 ≤ ε, ̆s T R̆ I ̆s ≤ E I . (6) 

To apply ADMM to the problem in (6) , we use the variable split- 

ting trick and introduce an auxiliary variable z̆ : 

min 

s̆ , ̆z 
s̆ T Q̆ ̆s , s.t. s̆ T s̆ = 1 , ‖ ̆s − s̆ 0 ‖ 

2 ≤ ε, ̆z T R̆ I ̆z ≤ E I , ̆s = z̆ . (7) 

The associated augmented Lagrangian is given by 

L ρ ( ̆s , ̆z , λ) = ̆s T Q̆ ̆s + λT 
( ̆s − z̆ ) + ρ/ 2 ‖ ̆s − z̆ ‖ 

2 , (8) 

where λ is the Lagrange multiplier and ρ is the penalty parameter. 

The proposed algorithm via ADMM consists of the following it- 

erations: 

s̆ (k +1) = arg min 

s̆ 
L ρ ( ̆s , ̆z (k ) , λ(k ) 

) , (9) 

z̆ (k +1) = arg min 

z̆ 
L ρ ( ̆s (k +1) , ̆z , λ(k ) 

) , (10) 

λ(k +1) = λ(k ) + ρ( ̆s (k +1) − z̆ (k +1) ) . (11) 

Next we present the solutions for the problems in (9) and (10) , 

respectively. For notational simplicity, we omit the variable super- 

scripts in the following subproblems. 

• Update of s̆ (k +1) : 

s̆ (k +1) = arg min 

s̆ 
{ ̆s T Q̆ ̆s + λT 

( ̆s − z̆ ) + ρ/ 2 ‖ ̆s − z̆ ‖ 

2 } 
s.t. s̆ T s̆ = 1 , ‖ ̆s − s̆ 0 ‖ 

2 ≤ ε. (12) 

Note that the objective function of (12) can be written as 

s̆ T Q̆ ̆s + λT 
( ̆s − z̆ ) + ρ/ 2 ‖ ̆s − z̆ ‖ 

2 

= ̆s T Q̆ ̆s + ( λ − ρz̆ ) T s̆ + [ ρ/ 2(1 + ‖ ̆z ‖ 

2 ) − λT 
z̆ ] . 

Thus the update equation of s̆ (k +1) can be obtained by solving 

min 

s̆ 
s̆ T Q̆ ̆s + ( λ − ρz̆ ) T s̆ , s.t. s̆ T s̆ = 1 , ‖ ̆s − s̆ 0 ‖ 

2 ≤ ε. (13) 

One can solve the optimization problem in (13) via the La- 

grange multipliers method. However, it has a high computational 

complexity. Alternatively, we apply majorization-minimization 

(MM) technique [21] to tackle it efficiently. To this end, we no- 

tice that Q̆ = μI − R̆ 
 M̆ = (μ − λmin ( ̆R )) I (here R̆ is the real- 

valued version of R defined like Q̆ and λmin ( ̆R ) is its small- 

est eigenvalue). Then ( ̆s − s̆ (k,n ) ) T ( ̆Q − M̆ )( ̆s − s̆ (k,n ) ) ≤ 0 . As a re- 

sult, we can find a surrogate function of the objective in (13) , 
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