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a b s t r a c t 

Distributed Compressive Sensing (DCS) is an extension of compressive sensing from single measurement 

vector problem to Multiple Measurement Vectors (MMV) problem. In DCS, several reconstruction algo- 

rithms have been proposed to reconstruct the joint-sparse signal ensemble. However, most of them are 

designed for signal ensemble sharing common support. Since the assumption of common sparsity pat- 

tern is very restrictive, we are more interested in signal ensemble containing both common and inno- 

vation components. With a goal of proposing an MMV-type algorithm that is robust to outliers (absence 

of common sparsity pattern), we propose Greedy Pursuits Assisted Basis Pursuit for Multiple Measure- 

ment Vectors (GPABP-MMV). It employs modified basis pursuit and MMV versions of multiple greedy 

pursuits. We also formulate the exact reconstruction conditions and the reconstruction error bound for 

GPABP-MMV. GPABP-MMV is suitable for a variety of applications including time-sequence reconstruction 

of video frames, reconstruction of ECG signals, etc. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Compressive Sensing (CS) [1] ensures the reconstruction of a 

sparse signal x ∈ R 

n from m � n linear incoherent measurements of 

the form y = �x ∈ R 

m where � ∈ R 

m ×n is a known sensing matrix. 

CS reconstruction algorithms can be broadly classified as convex 

relaxation methods (such as Basis Pursuit (BP) [2] ) and Greedy Pur- 

suit (GP) algorithms (such as Orthogonal Matching Pursuit (OMP) 

[3] and Subspace Pursuit (SP) [4] ). For multiple signals, Single Mea- 

surement Vector (SMV) reconstruction problem can be extended 

to Multiple Measurement Vectors (MMV) problem [5] . The joint- 

sparse signal ensemble (otherwise known as correlated sparse sig- 

nal ensemble) can be broadly classified as innovative joint-sparse 

and common joint-sparse. Let J denote the number of signals in 

the joint-sparse signal ensemble, x j ∈ R 

n denote the signal j where 

j ∈ { 1 , 2 , . . . , J} , and K denote the number of non-zero elements in 

each x j . In the innovative joint-sparse signal ensemble (otherwise 

known as Joint-Sparsity Model (JSM) – 1), each x j consists of two 

components: a common sparse component that is present in all 

the signals, and a sparse innovation component that is unique to 

it [6] . In other words, x j can be split as x j = z + z j where z is the 

same for all of the x j and z j is the unique portion of x j . Let K c de- 

∗ Corresponding author. 

E-mail address: sathiya3@e.ntu.edu.sg (S. Narayanan). 

note the number of non-zero elements in z . In the common joint- 

sparse signal ensemble (otherwise known as JSM-2), all the signals 

share a common sparsity pattern. In other words, each x j is sup- 

ported only on the same set of K non-zero locations but with dif- 

ferent non-zero coefficients [6] . 

Each signal in the ensemble, x j , is independently sensed using 

� such that y j = �x j ∈ R 

m , and then the resulting measurements 

are transmitted. The data matrix for an ensemble of J signals (in 

the case of noiseless measurements) is given by, 

Y = �X ∈ R 

m ×J (1) 

where Y = [ y 1 , y 2 , . . . ., y J ] and X = [ x 1 , x 2 , . . . ., x J ] ∈ R 

n ×J . 

1.1. Motivation and relation to prior work 

For joint-sparse signals sharing a common sparsity pattern 

(i.e. common joint-sparse signals), several algorithms have been 

developed to reconstruct X from Y , utilizing the common sparsity 

condition [7–12] . However, in most cases this knowledge does not 

exist and the assumption of common sparsity pattern for 100% 

of the data becomes far from ideal. Therefore, we are interested 

in innovative joint-sparse signals. In [13] , a SMV-type solution 

was proposed for reconstructing innovative joint-sparse signals. 

It solves a single linear program involving concatenated mea- 

surement vectors and concatenated measurement matrices. Due 

to concatenations, dimension of the signal to be reconstructed 
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increased from n to nJ , and therefore, the complexity of the 

algorithm is high. An MMV-type recovery method for innovative 

joint-sparse signals, the Texas Hold ’Em algorithm [14] , separated 

the recovery of the common and innovation components into 

two stages. The measurements used to recover the common 

component are obtained by either averaging or concatenating 

measurements from all the sensors in the network. Furthermore, 

each innovation component is recovered locally at the correspond- 

ing sensor. The computational complexity of the Texas Hold ’Em 

algorithm is linear in J . However, due to the fact that the recovery 

of innovation components is based on the average or concatenated 

measurements, its achievable reconstruction accuracy is limited. 

To recover two correlated signals with partially disjoint supports, 

a modified Orthogonal Matching Pursuit (OMP) algorithm called 

Probability weighted OMP (P-OMP) was proposed [15] . However, it 

has a drawback: it requires prior probabilistic information on the 

signals supports. Such information may not be available in many 

practical applications and therefore, P-OMP cannot be applied 

in those applications. In [16] , a Robust Multiple Sparse Bayesian 

Learning (R-MSBL) algorithm was proposed which captured the 

support set of the majority of data vectors. Though R-MSBL, unlike 

P-OMP, does not require any probabilistic information, the time it 

takes for reconstruction is a concern. This concern arises mainly 

due to the presence of innovation components. 

Certain optimization-based algorithms attempted to recover 

X by mixed-norm minimization [17] . Mixed-norms exploit both 

sparsity and structure in the signal ensemble. Several mixed-norm 

based optimization algorithms have been designed to handle 

structured sparsity [18,19] . For data ensemble with simultane- 

ous low-rank and joint-sparse structure, a CS recovery approach 

jointly regularizing the solutions with their nuclear norm and 

the � 2, 1 -norm is proposed [9] . However, these mixed-norm based 

algorithms are not robust to innovation components present in 

x j . Therefore, we seek an MMV-type algorithm that is robust to 

innovation components. 

1.2. Contributions 

In this article, we propose Greedy Pursuits Assisted Basis Pur- 

suit for Multiple Measurement Vectors (GPABP-MMV), and for- 

mulate its exact reconstruction conditions and the reconstruction 

error bound. Through extensive simulations, we show that the 

GPABP-MMV is robust to outliers and it outperforms state-of-the- 

art MMV-type algorithms (such as R-MSBL and Texas Hold ’Em) in 

terms of reconstruction accuracy. GPABP-MMV is suitable for ap- 

plications wherein the signal ensemble follows innovative joint- 

sparse formulation with K c significantly less than K . The rest of 

this paper is organized as follows. In Section 2 , we briefly discuss 

Greedy Pursuits Assisted Basis Pursuit (GPABP) [20] . In Section 3 , 

we propose and analyze GPABP-MMV. In Section 4 , we present the 

simulation results comparing the performance of GPABP-MMV to 

that of the R-MSBL, Texas Hold ’Em, etc. Section 5 concludes the 

paper. 

2. Greedy Pursuits Assisted Basis Pursuit 

Consider the SMV reconstruction problem (i.e. reconstruction 

of x from y ). The actual support of x , T ⊂ { 1 , 2 , . . . , n } , is defined 

as the set of indices i where x ( i ) is non-zero. The partial sup- 

port, � ⊂ { 1 , 2 , . . . , n } , is defined as the set of indices i where x ( i ) 

is estimated to be non-zero. In some CS reconstruction problems, 

the partial support is known (termed as Partially Known Support 

(PKS)) and it is used to run Modified Basis Pursuit (Mod-BP) [21] . 

In [20] , it was shown that, if the partial support is not known, it 

can be derived using multiple GPs and then Mod-BP can be ap- 

plied. The GPABP algorithm [20] , given as algorithm 1, employs 

Fig. 1. Schematic of actual support ( T ) and partial support ( �). 

multiple GPs to form �. Let L denote the number of GPs involved 

in the formation of �. In fact, the L GPs are L different GPs. For 

example, if L = 2 , OMP is chosen for GP 1 and SP is chosen for GP 2 . 

Therefore, L GPs can give up to L different solutions of the form 

ˆ T i = GP i (�, y, K) ∀ i ∈ { 1 , 2 , . . . , L } 
where GP i stands for ith greedy pursuit and 

ˆ T i is the support set 

estimated by GP i . Then, the partial support is formed as follows: 

� := 

L ⋂ 

i =1 

ˆ T i . 

The need for L different GPs to derive � is as follows. Reconstruc- 

tion performance of a GP varies and depends on the nature of the 

sparse signal [22,23] . For example, OMP performs better than SP 

for some types of signals and SP performs better than OMP for 

some other type of signals. If the statistical distribution of the non- 

zero values of the signal is known a priori, the best recovery algo- 

rithm (for that type of signal) can be applied to derive the partial 

support. But in many practical scenarios, this prior knowledge is 

not available and hence, a fusion based approach (as in [24] ) that 

utilizes several GPs is used to obtain the partial support. 

Upon obtaining �, x is reconstructed from y using Mod-BP 

(termed Mod-CS in [21] ). The Mod-BP problem (in the case of 

noiseless measurements) is formulated as 

ˆ x = arg min 

˜ x 
‖ ̃

 x �c ‖ 1 s.t. � ˜ x = y (2) 

where �c is the set compliment of �, ˜ x �c is the subset of ˜ x formed 

by extracting the entries of ˜ x corresponding to the indices in �c , 

‖ . ‖ 1 stands for the vector � 1 -norm and ˆ x is the reconstructed sig- 

nal. Note that, in the case of noisy measurements, the constraint 

of the Mod-BP problem will be ‖ � ˜ x − y ‖ 2 ≤ ‖ w ‖ 2 where w ∈ R 

m 

is an additive noise such that y = �x + w ∈ R 

m . 

Lemma 1 recalls the exact reconstruction conditions for GPABP 

(in the case of noiseless measurements) as given in [21] and 

Lemma 2 recalls the reconstruction error bound for GPABP (in the 

case of noisy measurements) as given in [25] . The actual support 

of x, T , is split as T = (� ∪ �) \ �e where � := T \ � is the part of 

the support missing in � and �e := �\ T is the set of wrong lo- 

cations in �. A schematic describing T , �, �, and �e is given 

in Fig. 1 . Consider a typical reconstruction example where n = 50 , 

T = { 5 , 10 , 15 , 20 , 25 , 30 , 35 , 40 } and � = { 5 , 10 , 15 , 20 , 25 , 30 , 45 } . 
Then, � = { 35 , 40 } and �e = { 45 } . The signal sparsity (i.e. the 

number of non-zero elements in x ) is related to the signal sup- 

port as K = | T | where |.| stands for the cardinality of a set. The 

Restricted Isometry Constant (RIC), δS , for � ∈ R 

m ×n is as defined 

in [2] . 

Lemma 1 ( Theorem 1 in [21] ) . Let y = �x ∈ R 

m . If � obeys T := 

( �∪ �) \ �e , then ˆ x is the unique minimizer of Mod-BP (in step 3 of 

Algorithm 1 ) if 

| �| ≤ | �| and δK+ | �| + | �e | < 

1 

5 

. 
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