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a b s t r a c t 

This paper studies adaptive detection of radar targets embedded in generalized Pareto clutter on the 

condition with the limited secondary data. In order to alleviate the effects of the non-Gaussian character- 

istic of the clutter, a-priori knowledge of the non-Gaussian clutter is considered in the designed detector. 

More precisely, we consider that the texture of clutter obeys the inverse gamma distribution and the 

inverse covariance matrix of speckle is a combination of multiple a-priori spectral models. Within these 

considerations, we obtain an adaptive detector based on the generalized likelihood ratio test. Finally, the 

performance of the proposed detector is evaluated via the Monte-Carlo technique. The experiments re- 

sults indicate that the proposed detector outperforms the 1S-GLRT detector in limited secondary data 

scenarios. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The adaptive detection of radar targets in non-Gaussian clutter 

environment has been extensively researched in recent years. If the 

detectors are designed for the Gaussian clutter background, occur- 

rence of non-Gaussian clutter would increase the false alarm rate. 

Therefore, it is necessary to study the non-Gaussian characteristic 

of clutter and design the detectors which match the clutter’s char- 

acteristic, in order to obtain satisfactory detection performance. In 

order to characterize non-Gaussian clutter as precisely as possi- 

ble, a variety of clutter models are proposed [ 1 –3 ]. The compound 

Gaussian clutter model is widely used in clutter statistical model, 

because it is proved to be effective and practical from the physi- 

cal mechanism and measured clutter data [4] . Compound Gaussian 

model can describe the non-Gaussian clutter as the product of a 

slowly varying positive texture component and a fast varying mul- 

tivariate complex Gaussian speckle component [5] . As the texture 

component of clutter follows the gamma distribution, the ampli- 

tude of clutter is the K distribution [2] . Weinberg utilized the gen- 

eralized Pareto distribution to model the power of non-Gaussian 

clutter, whose texture is the random variable of inverse gamma 

distribution. Generalized Pareto power distribution is suitable to 

characterize the heavier clutter than K distribution [3] . 

Clutter characteristics have significant impact on target detec- 

tion performance. The detection performance of detectors can be 
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enhanced when the clutter statistical distribution is considered. 

The optimal detectors are derived in K-distributed clutter environ- 

ment [6] . Shape-parameter-dependent matched filter (MF) detec- 

tors with low computational cost are proposed in K-distributed 

clutter and the simulated results indicate that they have better 

detection performance than matched filter (MF) and normalized 

matched filter (NMF) detectors, and are comparable with the opti- 

mal detectors in K-distributed clutter [7] . When the texture follows 

the inverse Gamma distribution, the relevant detectors of adaptive 

point-like targets are proposed and the assessment experiments of 

detection performances show that the proposed detectors perform 

better than the detectors which do not utilize the knowledge of 

texture component [8] . 

In most adaptive detection schemes, the algorithms require the 

estimate of the clutter covariance matrix from signal-free data 

(secondary data), which are obtained from range-cells adjacent to 

the primary data cells. The sample covariance matrix (SCM) esti- 

mator [9] , the normalized sample covariance matrix (NSCM) esti- 

mator [10] and the recursive estimator (RE) [11] are widely used to 

estimate the covariance matrix. The estimation accuracy of the co- 

variance matrix depends on the number of secondary data and af- 

fects the detection performance of adaptive algorithms. Generally, 

in Gaussian clutter environment, the number of secondary data 

is required to be more than twice the number of the integrated 

pulse. In non-Gaussian situation, more secondary data are needed 

due to the non-Gaussian clutter properties. Meanwhile, it is con- 

sidered that the primary data and secondary data share the same 

covariance matrix structure. However, the assumption of homo- 

geneous clutter environment is somewhat idealistic [10] and the 
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heterogeneous environment is always encountered [12] . In hetero- 

geneous clutter environment, secondary data are limited to esti- 

mate the covariance matrix and this would result in the severe 

detection performance loss for the adaptive detectors. A-priori in- 

formation of the inverse covariance matrix is considered in order 

to mitigate the effects of heterogeneity of environment. Recently, 

multiple a-priori spectral models are proposed to model the actual 

clutter’s inverse covariance matrix. In [13] , the authors assume that 

the inverse covariance matrix can be modeled as a linear combina- 

tion of some available a-priori models and experiment result shows 

that the proposed detectors outperform conventional generalized 

likelihood ratio test (GLRT) detector and adaptive MF (AMF) detec- 

tor. 

In this paper, we consider the adaptive detection problem of 

radar targets with the limited secondary data. In order to alleviate 

the effects of heterogeneous clutter environment, a-priori knowl- 

edge about clutter is considered. More precisely, we model the 

texture component of clutter as the random variable which fol- 

lows the inverse gamma distribution in order to match the real 

non-Gaussian clutter characteristic. Moreover, the inverse covari- 

ance matrix of the speckle component is considered to be a lin- 

ear combination of some available a-priori models in the interest 

of improving the detection performance in the limited secondary 

data environment. Within these considerations, we devise a novel 

adaptive detector based on GLRT. 

The paper is organized as follows. In Section 2 , the problem for- 

mulation is dealt with and the target and clutter models are intro- 

duced. In Section 3 , the adaptive detector is derived. The detection 

performances are evaluated in Section 4 . Finally, conclusions are 

mentioned in Section 5 . 

2. Problem formulation 

Assume a radar transmits a coherent train of N pulses and the 

N -dimensional complex vector z = [ z(1) , . . . , z(N)] T denotes the 

radar returns (also called the primary data), where ( · ) T denotes 

the transpose of the argument. The decision on the existence of a 

target embedded in compound Gaussian clutter environment can 

be formulated in terms of the following binary hypotheses test: {
H 0 : z = c 
H 1 : z = αp + c 

(1) 

where the null hypothesis H 0 means that the complex vec- 

tor z is only the echo of clutter and the alternative hy- 

pothesis H 1 is the target echoes plus clutter situation; p = 

[1 , e j2 π f d , . . . , e j2 π(N−1) f d ] 
T 
/ 
√ 

N is the normalized steering vector, 

f d denotes the normalized target Doppler frequency; α is the un- 

known deterministic complex amplitude of the target, which ac- 

counts for both the target and the channel effects. 

The texture component of clutter in each range cell can be 

regarded as a random constant in a coherent processing inter- 

val (CPI) because the coherence length of the texture compo- 

nent is much longer than the coherent processing interval [14] . 

Consequently, the compound Gaussian model degrades into the 

spherically invariant random vector (SIRV) model which is widely 

applied in radar target detection [15] . The clutter vector c can be 

interpreted as the product of a real positive random variable and 

N -dimension complex Gaussian circular random vector according 

to SIRV and so we can get: 

c = 

√ 

τu (2) 

where texture component τ is a positive random variable and 

reflects the power fluctuation. For matching the real clutter 

characteristic in practical application, the texture component is 

considered to follow the inverse gamma distribution [8,16] : 

f (τ ) = 

1 

μλ�( λ) 
τ−( λ+1 ) exp 

(
− 1 

μτ

)
, τ > 0 (3) 

where λ denotes the shape parameter which represents the non- 

Gaussianity of clutter and μ denotes the scale parameter. The 

speckle component u is a N -dimensional complex Gaussian vec- 

tor with zero mean and an N × N -dimensional covariance matrix 

R = E( uu 

H ) , where the diagonal elements of R are all equal to one. 

Here, E ( · ) denotes the statistical expectation operation and ( · ) H 

denotes the conjugate transpose. Accordingly, the conditional co- 

variance matrix of c for a given τ is � = E( cc H | τ ) = τR . Usually, 

the role of secondary data is to estimate the covariance matrix R 

[9] . The more the available secondary data are, the more accurate 

the estimated covariance matrix is. However, we have to consider 

this case that the available secondary data may become deficient 

in practical application. Deficient secondary data means that they 

cannot provide enough information to obtain an accurate covari- 

ance matrix. Naturally, a-priori knowledge can be utilized. There- 

fore, we can design some different models within the known struc- 

ture to be a-priori knowledge. In order to solve the problem that 

the clutter’s heterogeneity leads to a decrease of the usable sec- 

ondary data, we suppose that inverse covariance matrix of speckle 

is the linear combination of some available a-priori models and be- 

longs to the uncertainty set [ 13,17 –19 ] 

A = 

{ 

M � 0 : M = 

1 

K 

K ∑ 

i =0 

t i ̃  R i 

} 

(4) 

where X �0 means that the matrix X is positive definite and the 

matrix M is the inverse matrix of covariance matrix R . ˜ R i , i = 

1 , . . . , K, denote the multiple a-priori models for the clutter struc- 

ture, which are available and assumed to be positive definite, i.e. 
˜ R i � 0 . In addition, t i ∈ R , i = 1 , . . . , K, are the unknown coeffi- 

cients. 

According to the previous analyses, the conditional probability 

density function (PDF) of the primary data z can be written under 

H 0 hypothesis and H 1 hypothesis as follows: 

f (z | M , τ ; H 0 ) = 

| M | 
( τπ ) 

N 
exp 

(
−τ−1 z H Mz 

)
(5) 

f (z | α, τ, M ; H 1 ) = 

| M | 
( τπ ) 

N 
exp 

(
−τ−1 (z − αp ) 

H 
M (z − αp ) 

)
(6) 

where | · | is the determinant of a matrix. 

3. Detectors design 

In this section, an adaptive detector based on GLRT test is de- 

veloped for radar targets in generalized Pareto clutter. The afore- 

mentioned binary hypothesis test has no an optimum solution due 

to the existence of the unknown parameters. The GLRT [20] is the 

suboptimum solution and the GLRT for the problem of interest 

takes the form of: 

max 
α, M ∈ A 

∫ 
f (z | α, τ, M ; H 1 ) f (τ ) dτ

max 
M ∈ A 

∫ 
f (z | M , τ ; H 0 ) f (τ ) dτ

H 1 

> 

< 

H 0 

γGLRT (7) 

where γ GLRT is the detection threshold to be set according to the 

desired probability of false alarm. 
Firstly, we compute the integral of the texture component of 

clutter in H 1 hypothesis according to (3) and (6) : 

f (z | α, M ; H 1 ) = 

∫ 
f (z | α, τ, M ; H 1 ) f (τ ) dτ

= 

�( λ + N ) | M | [(z − αp ) 
H 

M (z − αp ) + 1 /μ
]−( λ+ N ) 

πN μλ�( λ) 
(8) 
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