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a b s t r a c t 

This paper describes two approaches to optimization of the key design parameters, the support region 

threshold and the number of magnitude representation levels, of product polar companded quantizer 

(PPCQ) for Gaussian source of unit variance. The first approach is based on the exact performance anal- 

ysis of PPCQ and on distortion optimization with respect to the key design parameters. Due to the op- 

timization problem complexity we encountered with the first approach, some suitable approximations 

are introduced with the second one. As a result, much simpler asymptotic closed-form formula for dis- 

tortion of PPCQ is derived as a function of the support region threshold. Although with this approach 

the closed-form formula for the support region threshold cannot be derived, the results of this approach 

indicate the useful support region threshold form. By combining the results of both approaches we pro- 

pose, the worthy closed-form formulas for the support region threshold and signal to quantization noise 

ratio of a nearly optimal PPCQ are provided. Moreover, from the results of both analyses the lower and 

upper bound expressions for the number of magnitude representation levels are provided. The analysis 

presented in the paper is useful for designing PPCQ and is of great theoretical and practical importance. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Two-dimensional quantizer Q is every mapping from R 2 to the 

finite set of N points ˆ Y = { ̂ y 1 , ̂  y 2 , . . . , ̂  y N } from R 2 . These points are 

known as the representation levels , while sets of all points x ∈ R 2 

such that Q(x ) = ̂  y i for a fixed i , are denoted by C i and known as 

quantization cells [1] . We denote by R and � the magnitude and 

phase component of two-dimensional random variable X = ( X 1 , 

X 2 ). By radial symmetry, one can assume that the probability den- 

sity function (PDF) p X 1 , X 2 ( x 1 , x 2 ) depends only on the signal mag- 

nitude r = ‖ x ‖ = (x 2 
1 

+ x 2 
2 
) 1 / 2 and not on the phase component θ . 

Due to this symmetry, it is suitable to use the quantizer hav- 

ing its representation levels grouped on a certain number of cir- 

cles. In other words, set of all representation levels, in polar co- 

ordinates, is given by ˆ Y = { ( ̂ r i , ˆ θ i j ) , i = 1 , 2 , . . . , L, j = 1 , 2 , . . . , M i } . 
Here, ˆ r i are radii of circles and known as radial representation lev- 

els , ˆ θ i j are angular components of representation levels and known 

as phase representation levels , while L and M i are total numbers 

of radial levels and phase levels corresponding to the i th radial 
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level. In polar quantization, the total number of representation lev- 

els is N = M 1 + M 2 + · · · + M L . In the same time, quantization cells 

are given by [1] C i j = { (r, θ ) , r i −1 ≤ r < r i , θi j−1 ≤ θ < θi j } where 

r i and θ ij are radial and phase region bounds . Here i = 0 , 1 , . . . , L , 

j = 0 , 1 , 2 , . . . , M i , r 0 = 0 , and θi M i 
= θi 0 . Radial symmetry of the 

source further implies that the phase reconstruction levels ˆ θ i j and 

region bounds θ ij are given uniformly, by [1–3] ˆ θ i j = 2 π · (2 j −
1) / (2 M i ) , j = 1 , 2 , . . . , M i and θi j = 2 π · j/ M i , j = 0 , 1 , 2 , . . . , M i . 

The phase quantization can be dependent on the magnitude 

and then it is called unrestricted polar quantization [2,4–8] . Con- 

versely, when the phase and magnitude are quantized indepen- 

dently, quantization is called product polar quantization or restricted 

polar quantization [9–14] . An unrestricted polar quantizer assigns a 

different number of phase levels at different magnitude levels. Un- 

like the unrestricted polar quantizer, a product polar quantizer has 

an equal number of phase reconstruction levels M i = M for every 

radial reconstruction level ˆ r i . The total number of representation 

levels for the product polar quantizer is equal to N = LM. Accord- 

ingly, as highlighted in [13] and [14] , compared to unrestricted po- 

lar quantizers, product polar quantizers, we consider in this paper, 

are simpler from design and implementation point of view. 

Companding technique is a commonly used way to design 

quantizers with large number of representation levels. This tech- 

nique can be applied for scalar, vector and also, in the special case, 
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for polar quantizers. In the case of polar companded quantization, 

representation levels and region bounds are given by [6–10] : 

ˆ r i = g −1 ((2 i − 1) / (2 L )) , i = 1 , 2 , . . . , L, (1) 

r i = g −1 (i/L ) , i = 0 , 1 , . . . , L − 1 , r L = r max = g −1 (1) , (2) 

where g : D → [0, 1] is a certain function, known as radial compres- 

sor function . Additionally, g has to be continuous and growing func- 

tion, having either D = [0 , + ∞ ) (infinite support for r max → ∞ ) or 

D = [0 , r max ] (finite support for a finite r max ) as its domain. For a 

finite support region threshold, r max , the region { x ∈ R 2 | ‖ x ‖ ≤ r max } 

is usually called a granular region, while its complement is named 

as an overload region [6,14] . 

Due to its significance, the problem of support region opti- 

mization has been extensively considered in the field of scalar 

quantization, for instance in [15–18] . However, possibly, due to 

the complexity reasons, the similar problem in the field of polar 

quantization has remained unexplored until recently. In particu- 

lar, in [14] the optimization of the support region threshold and 

the number of magnitude levels of the simplest polar quantizer, 

i.e. product polar uniform quantizer, has been conducted and wor- 

thy closed-form formulas have been derived for the asymptotically 

optimal support region threshold of the magnitude quantizer and 

asymptotically optimal rate allocation between the magnitude and 

phase quantizers. Also, in the field of polar companded quanti- 

zation, this problem has been recently analysed in [6,7] . Specifi- 

cally, in [6] and [7] , for the unrestricted polar companded quan- 

tizer designed asymptotically optimal for the Gaussian source, the 

finite support radial compressor function has been obtained by 

constraining the domain of the infinite support radial compressor 

function and then the optimization of the support region thresh- 

old has been performed so that the total asymptotic distortion per 

dimension is minimal. The optimization procedure performed in 

[6] and [7] have significantly contributed to the performances im- 

provement of the unrestricted polar companded quantizer, espe- 

cially noticeable for smaller bit rates. The results of [6,7] and [14] , 

have motivated us to perform optimization of the product polar 

companded quantizer (PPCQ), which, to the best of the authors 

knowledge, has not been reported in the literature so far. 

In the case of a finite support polar quantizer and radially sym- 

metric source, quantizer performance, usually measured by distor- 

tion , is computed by summing the following expressions for the 

granular distortion and the overload distortion [1–6] : 

D g = 

1 

2 

L ∑ 

i =1 

∫ r i 

r i −1 

[
r 2 + ̂

 r 
2 
i −2 r ̂  r i sinc(π/M) 

]
p R (r) dr, (3) 

D ol = 

1 

2 

∫ + ∞ 

r max 

[
r 2 + ̂

 r 
2 
L −2 r ̂  r L sinc(π/M) 

]
p R (r) dr, (4) 

where p R ( r ) is the PDF of the magnitude component R = ‖ X ‖ . 
Starting with Eqs. (3) and (4) and assuming finite support prod- 

uct polar companded quantization in this paper we derive the two 

formulas for distortion of the observed quantizer. The first one is 

exact formula and the other is an asymptotic formula for distortion 

represented as a function of the support region threshold r max and 

the number of magnitude levels L . In order to minimize the distor- 

tion introduced by the model we observe, in this paper we perform 

optimization of both distortions with respect to r max and L values. 

Specifically, we perform numerical optimization of the distortion 

determined by the exact formula, i.e. we use Simplex method and 

perform an exhaustive computer search for the optimal values of 

the key design parameters L and r max . Since the optimization task 

is not a simple one, in this paper we also introduce some suit- 

able approximations that provide the derivation of the asymptotic 

closed-form formulas for distortion of the observed quantizer fa- 

cilitating the problem of optimization we have set. From the ana- 

lytical expression for the support region threshold r max , obtained 

as a result of asymptotic distortion optimization, the form of r max 

dependence on the number of representation levels N is suggested. 

This dependence is particularly determined from the results of the 

previously mentioned exhaustive computer search. Specifically, we 

combine the results of two optimization approaches and we de- 

termine the closed-form formulas for r max and SQNR as a function 

of the number of representation levels N by means of linear re- 

gression method. Moreover, based on the conducted analysis we 

provide the lower and upper bound formulas for the number of 

magnitude levels L . 

The paper is organized as follows. Section 2 provides the ex- 

act analysis of the finite support product polar companded quan- 

tization, where fundamental expressions for granular D g and over- 

load distortion D ol are derived. In Section 3 we perform an asymp- 

totic analysis of the considered quantizer resulting in the deriva- 

tion of the simple asymptotic expressions for granular and over- 

load distortion as the function of quantizer design parameters L 

and r max . We discuss the optimization procedure of design param- 

eters, providing the expression for the asymptotically optimal value 

of L and asymptotic expression for r max . Analysis is continued in 

Section 4 where the expressions are compared to the result of the 

exhaustive search for optimal parameters for N = 32 , 33 , . . . , 4096 . 

As a result, we propose the design procedure of nearly optimal 

PPCQ. The last section is devoted to the conclusions. 

2. Exact analysis of finite support product polar companded 

quantizers 

Assume that X is the two-dimensional Gaussian random vari- 

able with zero mean and unit variance. It is known that its mag- 

nitude and phase components ( R and �) are distributed as follows 

[1] : 

p R (r) = r e −r 2 / 2 , r ≥ 0 , p �(θ ) = 1 / (2 π) , θ ∈ [0 , 2 π ] . (5) 

Expression for the granular distortion D g of a finite support polar 

quantizer and radially symmetric source now became 

D g = 

1 

2 

L ∑ 

i =1 

[ 
F 2 ( r i −1 , r i ) + ̂

 r 
2 
i F 0 ( r i −1 , r i ) − 2 ̂

 r i sinc 

(
π

M 

)
F 1 ( r i −1 , r i ) 

] 
, 

(6) 

where F i (r, r ′ ) = F i (r ′ ) − F i (r) and F i ( r ) ( i = 0 , 1 , 2 ) are incomplete 

moments of R given by 

F 0 (r) = 

∫ r 

0 

p R (ρ) dρ = 1 − e −
r 2 

2 

F 1 (r) = 

∫ r 

0 

ρp R (ρ) dρ = −r e −
r 2 

2 + 

√ 

π

2 

er f 

(
r √ 

2 

)
. (7) 

F 2 (r) = 

∫ r 

0 

ρ2 p R (ρ) dρ = 2 − e −
r 2 

2 (2 + r 2 ) 

Note that er f (x ) = 

2 √ 

π

∫ x 
0 e −t 2 dt is the error function [19] . The 

overload distortion D ol is computed in the similar manner 

D ol = 

1 

2 

L ∑ 

i =1 

[ 
F 2 ( r max , ∞ ) + ̂  r 

2 
L F 0 ( r max , ∞ ) − 2 ̂  r L sinc 

(
π

M 

)
F 1 ( r max , ∞ ) 

] 
, 

(8) 

where we end up with: 
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