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a b s t r a c t 

This paper develops a multihypothesis testing framework for calculating numerically the optimal mini- 

max test with discrete observations and an arbitrary loss function. Discrete observations are common in 

data processing and make tractable the calculation of the minimax test. Each hypothesis is both associ- 

ated to a parameter defining the distribution of the observations and to an action which describes the 

decision to take when the hypothesis is true. The loss function measures the gap between the parame- 

ters and the actions. The minimax test minimizes the maximum classification risk. It is the solution of a 

finite linear programming problem which gives the worst case classification risk and the worst case prior 

distribution. The minimax test equalizes the classification risks whose prior probabilities are strictly pos- 

itive. The minimax framework is applied to vector channel decoding which consists in classifying some 

codewords transmitted on a binary asymmetric channel. The Hamming metric is used to measure the 

number of differences between the emitted codeword and the decoded one. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of classifying discrete distributions often appears 

in engineering applications, including pattern recognition with 

discrete-valued data [1,2] , sensor network with quantized ob- 

servations [3,4] image processing [5–7] , and channel decoding 

[8,9] among others. The goal of this work is to decide between K 

hypotheses H 1 , ..., H K where the Probability Mass Function (pmf) 

of the observed data x depends on the known value of a certain 

parameter given the hypothesis. A decision error is measured with 

an arbitrary loss function which depends both on the true hypoth- 

esis and the chosen one. We assume that the prior probabilities of 

the hypotheses are unknown. This is a classical assumption when 

the prior knowledge of observations is insufficient. 

1.1. Minimax classification 

Contrary to a purely Bayesian criterion which needs a complete 

statistical description of the problem [10] , the minimax criterion 

is well adapted to classification problems where the probability 

of each hypothesis is unknown. This criterion consists in minimiz- 

ing the largest probability to make a classification error. The opti- 

mal test consists in choosing the maximum of weighted likelihood 

functions. The weights are generally very difficult to calculate [11] , 
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even in some simple cases. Furthermore, the minimax test may 

satisfy the equalization property, i.e., the worst classification errors 

are all equal, which is quite interesting in practice. 

There are two main trends in literature to design minimax test. 

The first trend consists in calculating analytically the minimax test. 

On the first hand, the minimax test is studied in a general set- 

ting [10,11] . Although there is a vast literature, it is still difficult 

to find an algorithm which calculates the minimax test for a spe- 

cific situation. For instance, the famous book [10] does not describe 

any algorithm to compute a minimax test. On the second hand, the 

minimax test is often established for a specific issue [12–16] but 

the algorithm can not be easily extended to an other observation 

model. 

The second trend consists in computing numerically the mini- 

max test [17–30] . The paper [17] is certainly the first to use of pro- 

gramming techniques for testing two composite hypotheses based 

on discrete random variables. The LP approach was already implicit 

in [18] with real-valued observations. It is shown in [19] how to 

use the simplex method for calculating minimax decisions func- 

tions. Duality theory was first used in [20] and for the general case 

of minimax tests in [21] . The results are extended to the more gen- 

eral class of most stringent tests in [22] . The paper [23] introduced 

a framework where the theory of infinite LP is applicable. The sur- 

vey [24] gives an overview of these pioneering approaches. All the 

above mentioned papers are focused on the classification of only 

two hypotheses. 
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In the case of several hypotheses, the work [26] is devoted to 

solving general minimax problems by iteration methods. To solve 

a decision problem with an arbitrary loss function, numerical solu- 

tions involving nonlinear optimization to obtain the least favorable 

distribution have been studied in [27,31,32] . Obtaining the least fa- 

vorable distribution simplifies the problem but it does not provide 

necessarily an equalizer minimax test, even when it exists. Indeed, 

in case of discrete observations, the equalization of the classifica- 

tion risks needs the randomization of the test, which is not ob- 

tained when only the least favorable distribution is computed. The 

work [25] showed that the theory of infinite LP can be exploited 

for multiple hypotheses testing problems but they do not propose 

any constructive algorithm to solve the problem. The case of sev- 

eral hypotheses is closely related to the problem of minimax esti- 

mation [33] , except that the parameter space is generally not finite 

but continuous and compact in case of minimax estimation. 

1.2. Discrete observations and finite linear programming 

This paper is in favor of a “discretize-then-optimize” approach, 

i.e., the case of discrete observations can be interpreted as the dis- 

cretization, or quantization, of continuous real observations. Dis- 

crete observations often occur in signal processing applications 

where the quantization of continuous values is necessary [34] . Dig- 

ital communications and image processing are some fields where 

quantization is crucially important [35,36] to limit the size of the 

storage or to describe a digital content with only a few features. 

Wireless sensor networks are characterized by limited resources, 

such as energy and communication bandwidth. One way to save 

energy is to limit the data transmitted in the network by using 

quantized data [3,37,38] . More generally, the approach studied in 

this paper can be easily applied to any signal processing applica- 

tions where data quantization is of interest. The way the data are 

quantized is out of the scope of this work. 

Discrete observations naturally involve finite Linear Program- 

ming (LP). In fact, as described in Section 2 , the decision func- 

tion is then a vector of reals which makes possible the construc- 

tion of a finite LP problem to compute the minimax test and the 

worst prior distribution. After discretization, the standard LP prob- 

lem [39] can be solved using techniques for large-scale LP [40] , 

e.g., interior point methods, Dantzig-Wolfe decomposition, etc. On 

the contrary, continuous observations lead to infinite LP because 

the decision function generally belongs to an infinite dimensional 

space, as shown for instance in [22] . Infinite LP has the advan- 

tage to fit a general case but it is numerically difficult to solve as 

shown for example in [41,42] . The main way to numerically solve 

an infinite LP consists in discretizing the problem or to discretize 

the solution of the problem if it is known. Alternative approaches 

for solving infinite LP consist in approximating the initial problem 

by a sequence of LP problems with finite dimensional spaces [42] . 

The main drawback of this alternative “optimize-then-discretize”

approach would be to develop ad-hoc optimization algorithms. 

1.3. Contributions of the paper 

The approach proposed in this paper is based on [22] where the 

author solves a LP problem to calculate the minimax test between 

only two hypotheses (binary classification). The paper [22] does 

not consider any loss function; only the probability of misclassi- 

fication is studied. It deals with hypotheses which can be compos- 

ite, i.e., each hypothesis may refer to an infinite number of statis- 

tical models. It is focused on continuous observations and it stud- 

ies the minimax test as the solution of an infinite LP problem. It 

also proves a weak duality theorem between the primal infinite 

LP problem and its dual. The solution of the dual LP problem gives 

the worst case distribution of the minimax test. All the results pro- 

posed in [22] are theoretical and no algorithm is proposed, or can 

be easily derived, to compute the minimax test. The case of dis- 

crete observations is just very briefly introduced as a motivation of 

the general study. This paper extends [22] to the multiple hypoth- 

esis framework ( K -ary classification with K ≥ 3) and to an arbitrary 

loss function, i.e., it considers that the classification risk between 

a couple of hypotheses can change with respect to the involved 

couple of hypotheses. It only considers simple hypothesis: each hy- 

pothesis refers to only one statistical model. It is focused on dis- 

crete observations in order to make tractable the computation of 

the minimax test. 

The first contribution of this paper is the design of a minimax 

classification test between multiple hypotheses as the solution of 

a finite LP problem, called the primal problem, when the observa- 

tions are discrete and the loss function is arbitrary. This contribu- 

tion is summarized in Theorem 2 . The explicit calculation of the 

randomized minimax test makes it possible to equalize the classi- 

fication risks, which is discussed in Corollary 1 . This equalization 

of the classification risks is generally not fulfilled by a Bayes test 

because it depends on the worst case distribution. 

The second contribution is the computation of the worst case 

distribution, also called the least favorable prior, which is obtained 

as the solution of the dual LP problem. The minimax test is then 

expressed as the maximum of weighted likelihood functions, i.e., it 

is a Bayesian test associated to the worst case weights. This con- 

tribution is summarized in Theorem 3 . The calculation is very ac- 

curate since there is no need of a stopping criterion to halt the 

algorithm. 

Finally, the minimax test is applied to noisy channel decoding. 

The Hamming metric is used to measure the number of differences 

between the emitted codeword and the decoded one. Assuming 

that the channel and the codebook are known but not the prob- 

abilities of each codeword, it is shown that the minimax test out- 

performs the conventional Maximum Likelihood (ML) decoder, also 

known as the Multiple Generalized Likelihood Ratio Test (MGLRT), 

which assumes an uniform prior over the codebook. The ML de- 

coder is clearly suboptimal in case of the binary asymmetric chan- 

nel when the prior distribution of the codewords is not uniform. 

It should be noted that the optimality of the minimax test is non- 

asymptotic and it is different from the random coding sense usu- 

ally employed in channel decoding. 

1.4. Organization of the paper 

The paper is organized as follows. Section 2 describes the sta- 

tistical framework, including the presentation of the minimax cri- 

terion and the LP problem whose solution is the minimax test. 

Section 3 studies the solution of the LP problems, both the pri- 

mal and the dual ones, which lead to the minimax test closed- 

form expression and the worst case distribution of the hypotheses. 

Section 4 shows the relevance and efficiency of the proposed test 

for noisy channel decoding. Finally, Section 5 concludes this paper. 

The following notations are used throughout the paper. The no- 

tation X ∼ p means that X follows the pmf p . The expectation of 

the function f ( X ) with respect to the distribution of X is denoted 

E 

X [ f (X )] . If X ∼ p θ follows the distribution p θ parametrized by a 

vector θ, then the expectation is denoted E 

X 
θ

[ f (X )] . Lower-case and 

upper-case letters are for scalar variables or random variables, bold 

lower-case letters for column vectors, bold upper-case letters for 

matrices and calligraphic upper-case letters or upper-case Greek 

letters for sets. Transposition, the transformation of columns into 

rows in a vector x , resp. a matrix A , is denoted by x � , resp. A 

� . 
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