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a b s t r a c t 

The observations of nonlinear systems, exposed to a fading channel, greatly suffer from both transmission 

failure and signal fluctuation. This paper focuses on the design-oriented analysis of nonlinear estimator 

based on a modified extended Kalman filter (MEKF) over fading wireless networks. Bernoulli process and 

Rayleigh fading are taken into consideration to model transmission failure and signal fluctuation, respec- 

tively. The offline sufficient conditions are established for the boundedness of the expectations of the 

prediction error covariance matrices sequence (PECMS) of the MEKF, which shows the existence of a cru- 

cial arrival rate. Furthermore, based on the derived upper bound of PECMS, further sufficient conditions 

are provided for mean-square bounded estimate error of the MEKF using the fixed-point theorem. Nu- 

merical examples are also given to verify the analytical results and demonstrate the feasibility of the 

proposed methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Over the past decade, wireless sensors and actuators have 

received a lot of attention due to their advantages of low-costs 

and easy of expansion [1,2] . Modern industrial systems are widely 

equipped with wireless sensors, bringing high requirements for 

the monitoring systems [3–6] . The most effective way to real- 

ize the monitoring is by means of state estimation using linear 

Kalman filter (KF) and nonlinear filter, i.e., Kalman variants, which 

catalyzes the development of nonlinear filter because the non- 

linear system is the overwhelming majority in practice [7–12] . 

The stochastic stability of the filter is a necessary condition to 

guarantee the effectiveness of monitoring systems. 

However, the communication channel between wireless sets are 

susceptible to environmental influence. Thus, the drawback due to 

the wireless communication channels must be taken into consider- 

ation when conducting the analysis of the stochastic stability and 

performance of the filter. The major constraints of wireless chan- 

nel, reducing the estimation performance, are the transmission 

bandwidth and fading channel [13] . On one hand, the filter un- 

der the band-limited channel is confronted with the challenges of 
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the time-delay and quantization effect, which has been profoundly 

studied by Shi et al. [14] , Wu and Wang [15] , Su et al. [16,17] and 

Caballero-Águila et al. [18] . On the other hand, the fading chan- 

nel also causes unstable issues to the filter so that the stochastic 

stability and performance analysis of filter under fading channel 

becomes indispensable for the estimation systems design [19,20] . 

The crucial factor for an effective analysis of practical estimator 

is the modeling precision of the fading channel. Some research 

utilizes a binary treatment for the receiving information through 

the fading channel, which either trusts the information and uti- 

lizes it as an observation or drops it as a transmission failure. 

Such filtering under that channel structure was named as the filter 

with intermittent observations, and the stochastic stability of KF 

with intermittent observations for linear time invariant (LTI) was 

firstly studied by Sinopoli et al. [21] . That work pointed out that 

the prediction error covariance matrices sequence (PECMS) of the 

filter was random rather than deterministic, and the expectation 

of PECMS was exponentially bounded if the arrival rate exceeded a 

critical probability when the arrival of the observations conformed 

to a Bernoulli process. By utilizing more complicated channel 

model to describe the transmission failure, i.e., the Gilbert-Elliott 

channel model and finite state Markov process, a variety of 

research extended the analysis of filter with intermittent obser- 

vations to more general application scenario [22–25] . Moreover, 

some research extended the work from LTI system to nonlinear 

system [26–29] . 
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The other modeling method of fading channel is to describe the 

effectiveness of the observation information by the signal to noise 

ratio (SNR), which is also named as signal fluctuation [19,30,31] . 

It was pointed out that PECMS of the filter was a random vari- 

able because the signal fluctuation introduced randomness into 

channels, and upper bounds of means of PECMS was deduced 

if the channel’s SNR followed the specified distribution [30] . 

Besides, Quevedo further proposed that SNR was highly related 

to the channel gain, which was determined by the engineering 

parameters, i.e., the bit-rate and power level [19,31] . Furthermore, 

the performance analysis was extended from the filter level to 

the whole wireless estimation system level in [19,31,32] . Among 

all these works, the filter performance was analyzed in [33] and 

[34] under Rayleigh fading channel by verifying the upper error 

outage probability, which was of practical importance. 

Because both the modeling methods for fading channel are 

reasonable, an unified consideration about both the transmission 

failure and signal fluctuation is able to handle more comprehen- 

sive problems introduced by the practical problem from channels 

[20,35] . KF for LTI system with both transmission failure and 

signal fluctuation was taken into consideration in [35] , where the 

sufficient and necessary conditions for the stochastic boundedness 

of PECMS were put forward by the modified Lyapunov and Riccati 

iteration methods, respectively. The work was further extended to 

the time-varying KF with more generated fading model, where the 

transmission failure of channel was described as a Markov chain 

[20] . In the case of the nonlinear system, an UKF based filter with 

both disturbances was studied in [36] . 

Similar to [35] , the mean convergence of the PECMS was stud- 

ied and an upper bound sequence for the PECMS of UKF was given. 

However, PECMS is a significant criterion of KF for linear systems 

because the estimation error is a zero mean Gaussian vector with 

the covariance matrix equal to the PECMS. On the contrary, it be- 

comes unsuitable for nonlinear system only in terms of the sta- 

bility and performance of PECMS so that the mean-square estima- 

tion error is the proper indicator for nonlinear system. Moreover, 

the unknown diagonal matrix similar to [27] , which was a part of 

the parameters to calculate the upper bound, made the theorem 

in [36] difficult in application as an off-line analysis method for 

general nonlinear system. 

Motivated by these concerns for nonlinear systems, it is of 

significant necessity to study off-line sufficient conditions for the 

stochastic boundedness of PECMS and estimate error with both 

transmission failure and signal fluctuation. This effort can be 

utilized to design and analyze the fusion estimator over fading 

wireless networks. This paper focuses on the MEKF over fading 

channel with both disturbances and off-line sufficient conditions 

are established for the boundedness of both the mean of PECMS 

and the mean-square of the estimate error. Because the sufficient 

conditions for the boundedness of estimate error contain the 

relationship between the upper mean bound of PECMS and the 

system Jacobi matrix, an upper bound sequence for the mean of 

PECMS is also proposed in this paper. 

The rest of this paper is organized as follows. Section 2 in- 

troduces the nonlinear system and the fading channel which the 

observations are transmitted through. Moreover, the MEKF is es- 

tablished based on EKF and a proposed drop strategy. In Section 3 , 

it is proved that there exists a critical value λc . If the arrival rate 
˜ λ > λc is guaranteed, the mean of the PECMS (i.e., E [ ̂  P t+1 | t ] ) will 

be bounded for all initial conditions. In Section 4 , an explicit ex- 

pression sequence is proposed as the upper bound of the PECMS. 

Section 5 further derives the sufficient off-line conditions for the 

boundedness of ‖ e t | t −1 ‖ based on the upper bound of the PECMS. 

Section 6 conducted various numerical simulations to verify the 

theorems in previous sections. 

The following standard notations are adopted throughout this 

paper. The norm of vector ‖ x ‖ stands for the Euclidian norm, and 

the norm of matrix ‖ A ‖ stands for the spectral norm. E (x ) denotes 

the expectation value of x , and the E (x | y ) denotes the expectation 

value of x conditional on y. I n stands for the identity matrix with 

dimension n , and the I stands for the identity matrix with the 

suitable dimension. The matrix [ A 1 0 
0 A 2 

] is shortened as A 1 �A 2 . 

Finally, x ∼ N ( ̄x , P ) express that x follow the Gaussian distribution 

with x̄ mean and P covariance. 

2. Problem statement 

Consider the discrete time nonlinear dynamical system: 

x t+1 = f (x t ) + ω t , 

z t = h (x t ) + νt , (1) 

where x t ∈ R 

n is the state and z t ∈ R 

p is the measured output. The 

system function f ( x ) and estimate function h ( x ) are continuously 

differentiable at every x . The process noise ω t ∈ R 

n and mea- 

surement noise νt ∈ R 

p are both white Gaussian noise with the 

covariance matrices Q > 0 and R > 0, respectively. It is assumed 

that the initial state x 0 is also Gaussian random vector with the 

covariance matrix R 0 . Moreover, ω t , νt and x 0 are independent with 

each other. The measurement z t is transmitted over a wireless 

fading channel with both fluctuant and transmission failure. 

2.1. Effects of channel fading with transmission failure and signal 

fluctuation 

In this part, the impact of a time-varying fading communication 

channel will be modeled on the observation. Let z t and z t repre- 

sent the measurement in system (1) and the received observation 

of filter, respectively. The model of fading channel with both fluc- 

tuation and transmission failure is thus given by Xiao et al. [35] : 

z t = ξt z t + ηt , (2) 

where ηt ∈ R 

p is the channel additive noise, which is white Gaus- 

sian noise with covariance matrices � > 0. ξt ∈ R represents the 

fading channel, which consists of transmission failure and gain 

fluctuation, i.e., 

ξt = γt ϑ t . (3) 

The change gain ϑt is caused by the fluctuation, whose most 

common statistical model is Rayleigh fading. If ιt = ϑ 

2 
t , by the 

property of Rayleigh fading with the parameter ε, ιt is white 

and its distribution is that, ιt ∼ ε exp (−ειt ) . The arrival of the 

observation at time t is defined as a binary random γ t : 

γt = 

{
1 the filter successfully get the observation 

0 the observation suffers from the transmission failure. 

(4) 

γ t is a Bernoulli process with the parameter λ, which means that 

γ t is a sequence of independent identically distributed with the 

arrival rate P { γt = 1 } = λ [21] . 

The observation function of discrete-time nonlinear dynamical 

system together with the time-varying fading communication 

channel can be written as: 

z t = γt ϑ t h (x t ) + γt ϑ t νt + ηt , (5) 

where x 0 , ω t , νt , ηt , γ t and ϑt are uncorrelated with each other. 

Remark 1. By the help of time-stamped technology, the informa- 

tion of γ t together with the observation z t are available for the 

filter at time t . It is assumed that the channel gain ϑt is valid for 

the filter at time t by the wireless communication technology in 

[37] . Also, it could be supposed that the channel gain remains con- 

stant during the transfer of the t th data, which is suitable when 



Download English Version:

https://daneshyari.com/en/article/4977609

Download Persian Version:

https://daneshyari.com/article/4977609

Daneshyari.com

https://daneshyari.com/en/article/4977609
https://daneshyari.com/article/4977609
https://daneshyari.com

