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a b s t r a c t 

This paper considers the problem of flexible modeling as well as break point detection for time series 

signal of counts. In particular, the Poisson Generalized Autoregressive Moving Average (GARMA) models 

paired with radial basis expansions are used to fit such signals. A genetic algorithm is developed to find 

the possible breaks and the best fitting model derived from the minimum description length principle. 

The empirical performance of the proposed methodology is illustrated via a simulation study and a prac- 

tical analysis of the bursts in the BATSE gamma ray data. Lastly, the consistency of the estimated break 

points and the model parameters is established under some regularity conditions. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Time series of counts arise in a wide range of scientific re- 

search such as signal processing, astrophysics and epidemiology. 

For example, the number of photons emitted by astronomical ob- 

jects over time is important in studying their activities. Different 

models have been proposed to take into account the dependency 

structure and other complications introduced by count data such 

as discreteness. These models can be classified into two major cat- 

egories: parameter-driven models and observation-driven models 

where different strategies are used to model the dependency struc- 

ture. Parameter-driven models (see e.g., [1] ) introduce autocorre- 

lation through a latent process, while the conditional distribution 

of the current observation is specified as explicit functions of its 

lagged values in observation-driven models (see e.g., [2] ). Please 

refer to Camreon and Trivedi [3] for a review of the subject. 

Moreover, structural breaks are commonly observed in such 

data (e.g., sudden increase in photon counts due to gamma ray 

bursts), which draws attention to detecting and characterizing 

these deviations from stationarity. This problem of break detection, 

also known as time series segmentation, has been widely studied 

in signal processing and other fields, see e.g., [4–7] . However, there 

is less work on segmenting time series of counts. A notable excep- 

tion is a nonparametric algorithm called Bayesian Blocks [8] which 

aims to find the optimal segmentation of astronomical time series 
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of count data that separates local light-curve features from the ran- 

dom observational errors. Piecewise constant models are fitted be- 

tween change points in Bayesian Blocks which works similarly as 

a histogram with unequal bin width. See also [9] where a hierar- 

chical Bayesian approach is used to segment two or more related 

time series of counts. There are also hypothesis test type methods 

(e.g., cumulative sum based tests) for detecting change points in 

time series of counts, see e.g., [10,11] . Nevertheless, for all these 

methods, little emphasis is placed on flexible model fitting be- 

tween change points. 

In this paper, a new method is proposed which achieves both 

flexible model fitting and consistent break point detection in time 

series of counts. We choose a class of observation-driven mod- 

els called the generalized autoregressive moving average (GARMA) 

model proposed by Benjamin et al. [12] and specifically the 

Poisson-GARMA model to fit the count data, considering its resem- 

blance to the classic ARMA models and the relative simplicity in 

model estimation. A nonparametric modeling method called radial 

basis expansion is also used within the GARMA models to improve 

flexibility in model fitting. Break point detection is considered as a 

model selection problem solved by using genetic algorithms based 

on the minimum description length (MDL) principle, in view of 

their success in tackling break point detection problems in simi- 

lar context. 

The rest of this paper is organized as follows. First we introduce 

our modeling strategy with Poisson GARMA model and radial basis 

expansion in Section 2 . In Section 3 we apply the MDL principle to 

our break point detection problem and develop a genetic algorithm 

for solving the optimization involved. Following this, we state and 
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prove the weak consistency of the MDL solution in Section 4 . In 

Section 5 , we study the performance of our method via simula- 

tions, and we apply it to several gamma ray bursts datasets in 

BATSE catalog in Section 6 . Lastly, we conclude our paper with a 

summary and a discussion of possible generalizations in Section 7 . 

2. Model formulation 

The GARMA model proposed by Benjamin et al. [12] is 

an observation-driven model for non-Gaussian time series data 

y 1 , . . . , y n . Similar to the generalized linear model (GLM), the con- 

ditional density of each observation y t given the previous informa- 

tion set H t = (x t , . . . , x 1 , y t−1 , . . . , y 1 , μt−1 , . . . μ1 ) comes from the 

same exponential family; i.e., 

f (y t | H t ) = exp 

{
y t θt − b(θt ) 

φ
+ d(y t , φ) 

}
, (1) 

where θ t and φ are canonical and scale parameters, respectively. 

The functions b ( ·) and d ( ·) together define the particular exponen- 

tial family, where E (y t | H t ) = μt = b ′ (θt ) and var (y t | H t ) = φb ′′ (θt ) . 

The x t s are design points and in the current context, they are ra- 

dial basis expansion values of time index which will be explained 

in more details later. Unlike the classical GLMs, here the predic- 

tor η = g(μt ) = x ′ t β + τt has an additional component τ t which al- 

lows the inclusion of autoregressive moving average terms, result- 

ing in 

g(μt ) = ηt = x 

′ 
t β + 

p ∑ 

j=1 

φ j { g(y t− j ) − x 

′ 
t− j β} 

+ 

q ∑ 

j=1 

ψ j { g(y t− j ) − ηt− j } , (2) 

and GARMA( p, q ) models are defined by (1) and (2) . 

For time series of counts, Poisson GARMA( p, q ) models are used 

where the conditional distribution for y t is Poisson. The log func- 

tion is chosen as the link and any zero values of y t− j in (2) are 

replaced by a threshold parameter c such that 0 < c < 1. 

We consider the problem of segmenting time series of counts 

data into stationary pieces where each piece follows a Poisson 

GARMA model. Similar to the settings in Davis et al. [13] , for an 

observed time series of length n , let τ j , j = 1 , . . . , B be the break 

points between the j th and ( j + 1) th pieces. All the pieces are as- 

sumed to be independent and the j th piece of the time series W t 

can be modeled by a stationary Poisson GARMA( p, q ) model Y t, j ; 

i.e. 

W t = Y t+1 −τ j−1 , j , τ j−1 ≤ t < τ j , (3) 

and θ j = (β j , φ j , ψ j ) is the corresponding parameter vector. Here 

B and τ j s are unknown while the order p and q are assumed to 

be known for simplicity. The methodology can be straightforwardly 

extended to the cases where p and q are unknown. 

We also consider fitting each piece using radial basis expansion 

which is a nonparametric regression method to improve flexibility 

and accuracy (see [14] for more details). Radial basis function is 

a real-valued function whose value depends only on the distance 

from some point k , known as knot; i.e., δ(t, k ) = δ(‖ t − k ‖ ) . Our 

choice of δ for fitting is δ(t) = (| t − k | ) 3 which is used to generate 

design points x in (2) . To be more specific, 

h ( t ) = x 

′ 
t β = a 0 + a 1 t + a 2 t 

2 + a 3 t 
3 + 

K ∑ 

i =1 

b i ( | t − k i | ) 3 , 

where K is the total number of knots and { k i } K i =1 
are locations of 

the knots. Here K and k i s are also assumed to be unknown. 

Therefore, when comparing to existing methods for modeling 

time series of count data, a novelty of the current work is that, in 

addition to break point detection, it also models the mean h ( t ) of 

each piece nonparametrically. 

3. Model selection and practical fitting 

3.1. Model selection with MDL 

The two-part MDL developed by Rissanen [15] is used here to 

derive an objective function upon which a “best” segmented model 

is selected, including the knots’ locations in each piece. The MDL 

principle defines the best fitting model as the one which allows 

the greatest compression of the data, as reflected by achieving the 

minimum total code length. More detailed introductions of MDL 

can be found for examples in Hansen and Yu [16] and Lee [17] . 

Let F be the class of piecewise Poisson GARMA processes de- 

fined in (3) . The total code length of the data Y = (y 1 , y 2 , . . . , y n ) 

denoted by CL( Y ) for any model M ∈ F can be decomposed into 

two parts: the code length of the fitted model CL( ˆ M ) and that 

of the corresponding residuals CL( ̂  ε| ˆ M ). In other words, CL (Y ) = 

CL ( ˆ M ) + CL ( ̂  ε| ˆ M ) , and the “best” fitting model is the one that 

minimizes CL( Y ). Next we need to obtain expressions for CL ( ˆ M ) 

and CL ( ̂  ε| ˆ M ) , and we begin with CL ( ˆ M ) . 

For brevity, for the rest of this paper we set p = 1 and q = 0 

in (2) ; other values of p and q can be handled in a straightforward 

manner. That is, we are considering GARMA(1, 0) models, which 

can also be denoted as GAR(1) models. Now to encode any fitted 

model ˆ M , we need to take into account the total number and lo- 

cations of break points as well as the model fitted in each segment. 

To encode each segment, we need to encode the number and loca- 

tions of the knots and the estimated coefficients ˆ a i s and 

ˆ b i s from 

radial basis expansion. To be more specific, 

CL ( ˆ M ) = CL (B ) + CL (τ1 , τ2 , . . . τB ) + 

B +1 ∑ 

i =1 

CL ({ W t } τi −1 ≤t<τi 
) 

= CL (B ) + CL (τ1 , τ2 , . . . τB ) + 

B +1 ∑ 

i =1 

[ CL (K i ) + CL ({ k i j } ) 

+ CL ({ a i j } ) + CL ({ b i j } )] 

where K i is the number of knots in i th segment and { k ij } are the 

locations of knots. Based on the results from Rissanen [15] , it re- 

quires approximately log 2 ( I ) bits to encode an integer I and we can 

use this rule to encode numbers and locations of break points and 

knots. Moreover, the code length required to encode a maximum 

likelihood estimate computed from n data points is 1 
2 log 2 (n ) . Sup- 

pose that there are n i data points in the i th segment, { a ij } and { b ij } 

are maximum likelihood estimates based on the n i data points in 

this piece. Therefore, CL ({ a i j } ) + CL ({ b i j } ) = 

(K i +4) 
2 log 2 (n i ) . Putting 

these together, 

CL ( ˆ M ) = log 2 (B ) + 

B ∑ 

i =1 

log 2 (τi ) + 

B +1 ∑ 

i =1 

log 2 (K i ) + 

B +1 ∑ 

i =1 

K i ∑ 

j=1 

log 2 (p i j ) 

+ 

1 

2 

B +1 ∑ 

i =1 

(K i + 4) log 2 (n i ) . (4) 

Next we need an expression for CL( ̂  ε| ˆ M ), which can be well 

approximated by the negative log-likelihood of the fitted model 
ˆ M , as shown by Rissanen [15] . A such expression for the Pois- 

son GAR( p ) model log-likelihood is given in (A.5) below. As this 

expression is rather lengthy, we shall denote it as log L here. Con- 

sequently, the MDL criterion for the proposed piecewise Poisson 

GAR model with radial basis expansion is: 
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