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a b s t r a c t

A generic simulation-optimization framework for optimal irrigation and fertilizer scheduling is developed,
where theproblem is represented in the formof decision-tree graphs, ant colonyoptimization (ACO) is used
as the optimization engine and a process-based crop growth model is applied to evaluate the objective
function. Dynamic decision variable option (DDVO) adjustment is used in the framework to reduce the
search space size during the generation of trial solutions. The framework is applied for corn production
under various levels of water availability and rates of fertilizer application in eastern Colorado, USA. The
results indicate that ACO-DDVO is able to identify irrigation and fertilizer schedules that result in better net
returns while using less irrigation water and fertilizer than those obtained using the Microsoft Excel
spreadsheet-based Colorado Irrigation Scheduler (CIS) tool for annual crops. Another advantage of ACO-
DDVO compared to CIS is the identification of both optimal irrigation and fertilizer schedules.

© 2017 Published by Elsevier Ltd.

1. Introduction

In many regions of the world, irrigation is vital for food pro-
duction. While the importance of irrigation should increase in the
near future as a result of population growth (Dyson, 1999), eco-
nomic development (Schneider et al., 2011) and climate change
(D€oll, 2002), there will most likely be a reduction in the amount of
water available for irrigation due to increased domestic (Rosegrant
and Ringler, 2000), industrial, commercial (Malla and
Gopalakrishnan, 1999) and environmental (Burke et al., 2004;
Szemis et al., 2013) demands, as well as over-allocation of exist-
ing resources (Jury and Vaux, 2005) and the impact of climate
change (Arnell, 1999; Liu et al., 2010). Consequently, there is a need
to identify irrigation management strategies (e.g., sequential irri-
gation scheduling) that maximize economic return for a given
water allocation. However, this is not a trivial task due to the
typically large search space for this type of problem (Nguyen et al.,
2016b). This is because the development of an irrigation

management strategy involves a number of associated choices to be
made in relation to various components, including crops (type,
rotation, area planted), irrigation method and scheduling (magni-
tude, duration, and timing), as well as fertilizer application method
and scheduling (magnitude and timing).

In order to address the irrigation management strategy problem
as described above, various approaches including optimization,
simulation, and combined simulation-optimization approaches
have been employed. For the optimization approach (Singh, 2012,
2014), irrigation has been scheduled using dynamic programming
(Rao et al., 1988; Naadimuthu et al., 1999), nonlinear programming
(Ghahraman and Sepaskhah, 2004) and multi-objective program-
ming (Lalehzari et al., 2015) to maximize crop yield or economic
profit. Although these “conventional algorithms” (CAs) for optimi-
zation have the advantage of being simple and efficient to apply,
they are somewhat limited in terms of handling nonlinear prob-
lems as well as the “curse of dimensionality” (i.e., the search space
size grows exponentially with the number of state variables), such
as those that occur in irrigation management (Singh, 2014). In the
past decade, metaheuristic algorithms, such as evolutionary algo-
rithms (EAs), have been used extensively to overcome the short-
comings of CAs for solving computationally demanding (i.e., NP-
hard) sequential irrigation scheduling problems. For example,
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development and evaluation of genetic algorithms (GAs) for the
irrigation scheduling problem have been presented by Nixon et al.,
(2001), Wardlaw and Bhaktikul (2004), Haq et al., (2008), Haq and
Anwar (2010), Anwar and Haq (2013), and Sadati et al., (2014).

The simulation approach for solving irrigation management
problems varies widely in the level of model complexity and soil-
water-plant process representation. Simplistic crop models used for
irrigation management include: 1) those based on crop-water pro-
duction functions (Jensen, 1968; Doorenbos and Kassam, 1979) to
calculate crop yield response to irrigation water (Reca et al., 2001;
Evans et al., 2003; Azamathulla et al., 2008; Georgiou and
Papamichail, 2008; Brown et al., 2010; Prasad et al., 2011; Nguyen
et al., 2016a; Nguyen et al., 2016b); and 2) the FAO Penman-
Monteith method for crop evapotranspiration (ET) and the crop
growth coefficient approach of Doorenbos and Pruitt (1977) to esti-
mate crop water requirements(Shyam et al., 1994; Sethi et al., 2006;
Khare et al., 2007]. While these quasi-empirical modeling ap-
proaches are computationally efficient, they are unable to represent
the underlying physical processes affecting cropwater requirements
andcropgrowth ina realisticmanner. This limits theusefulnessof the
results obtained and prevents investigation of certain management
strategies (i.e., fertilizer application timing and rate) on the optimal
trade-offs between water allocation and net return. To assess the
impact of different irrigation management strategies in a more
realisticmanner (i.e., throughadetaileddescriptionof ETand/or crop
growth), a number of process-based soil water balance/dynamics
(George et al., 2000; Shang et al., 2004; Shang and Mao, 2006) and
crop growth (Ma et al., 2012b; Foster et al., 2014; Sun and Ren, 2014;
Seidel et al., 2015; Linker et al., 2016) modeling studies have been
conducted. These have utilized well-known cropping and agro-
ecosystem models, including CERES-Maize (Jones et al., 1986),
CROPGRO (Boote et al., 1998), RZQWM2 (Ma et al., 2012a), AquaCrop
(Vanuytrecht et al., 2014), EPIC (Zhanget al., 2015), STICS (Coucheney
et al., 2015), and SWAT (Arnold et al., 2012).

The above modeling studies have generally focused on a small
number of irrigation management strategy combinations from
among the large number that are available (e.g., Camp et al., 1997;
Rinaldi, 2001; Arora, 2006; Ma et al., 2012b). Consequently, there is
a need to combine detailed process-based crop growth simulation
models with optimization approaches so that better irrigation
management solutions resulting in maximum net returns can be
identifiedmore efficiently. The majority of simulation-optimization
studies in the literature have employed conventional optimization
algorithms (Cai et al., 2010; Karamouz et al., 2012; Hejazi et al.,
2013). An exception to this is the work of Kloss et al., (2012), who
developed a stochastic simulation framework combining the
CropWat (Smith, 1992), PILOTE (Mailhol et al., 1997), Daisy(Abra-
hamsen and Hansen, 2000), and APSIM (Keating et al., 2003)
cropping system models with an evolutionary algorithm to opti-
mize irrigation management and water productivity. In general,
simulation-optimization approaches utilizing CAs have been
somewhat restricted due to the generally large size of the search
space, which may limit the ability to find globally optimal or near-
globally optimal solutions in an acceptable time frame.

In addition to evolutionary algorithms such as GAs, other met-
aheuristic search algorithms such as ant colony optimization (ACO)
algorithms, have contributed significantly to solving a range of
water resources problems (Afshar et al., 2015), including irrigation
management problems(Nguyen et al., 2016a; Nguyen et al., 2016b).
In ACO, the problems are represented in the form of a decision-tree
graph which artificial ants have to traverse in a stepwise fashion in
order to generate trial solutions. Therefore, use of ACO can increase
the probability of finding globally optimal or near-globally optimal
solutions and improve computational efficiency through reduction
in the size of the search space and incorporation of domain

knowledge during the optimization process. In a similar way to
other metaheuristic algorithms, another advantage of ACO for
irrigation management problems is the ability to easily connect to
simulation models (Maier et al., 2014; Maier et al., 2015).

Nguyen et al., (2016b) developed a general optimization
framework for the crop andwater allocation problem that utilized a
dynamic decision tree graph and ACO as the optimization engine.
The framework was subsequently extended (Nguyen et al., 2016a)
to include the use of domain knowledge to bias the selection of
crops and water allocations at each node in the decision-tree graph
in order to increase computational efficiency. However, these
studies only focused on the annual optimal crop and water allo-
cation problem (i.e., each sub-area of the total area in the studied
region required decisions on which crop should be planted and
how much water should be supplied to the selected crop), but did
not consider irrigation water scheduling throughout the year (i.e.,
timing and magnitude of water allocation) for each crop in a sub-
area. In addition, both studies used crop water production func-
tions to calculate yield (instead of a physically-based and more
computationally expensive crop growth simulation model) and did
not consider the application of fertilizer, which can have a signifi-
cant influence on achieving maximum net return.

As evidenced from the above discussion, many existing
simulation-optimization approaches for solving the irrigation
management problem have either used simplified representations
of crop growthprocesses (whichhave anumberof disadvantages for
irrigation scheduling problems) or mathematical optimization al-
gorithms that are not especially amenable to linkage with process-
based crop growth models. Furthermore, while metaheuristic al-
gorithms can be linked to detailed crop growth models, there are
often inherent issues with simulation run-times and size of search
space (Loucks andVanBeek, 2005;Nguyenet al., 2016b). Despite the
potential advantages of ACO with respect to search space size
reduction, to the authors’ knowledge, ACO has not previously been
combined with process-based crop simulation models to identify
realistic irrigation and fertilization schedules that maximize net
return for a givenwater allocation. This typeof approach isneeded to
rigorously assess the large number of combinations associated with
the different components of the irrigation scheduling problem.
Consequently, the specific objectives of this paper are:

1. To develop an innovative metaheuristic simulation-
optimization framework that links ant colony optimization
(ACO) with a process-based crop growth model, enabling
optimal or near-optimal irrigation water and fertilizer applica-
tion schedules to be identified.

2. To demonstrate the proposed optimization framework for an
irrigation management case study in eastern Colorado, USA.

The remainder of this paper is organized as follows. A brief
introduction to ACO is given in Section 2. The generic simulation-
optimization framework for irrigation and fertilizer scheduling is
introduced in Section 3, followed by a case study description and
methodology for evaluating the proposed framework with the case
study in Section 4. The results and discussion are presented in
Section 5 before a summary and conclusions are given in Section 6.

2. Ant colony optimization (ACO)

ACO is a metaheuristic optimization algorithm inspired by the
foragingbehaviorof ants to identify the shortest path from their nest
to a food source using pheromone trails (Dorigo et al., 1996). In ACO,
the decision space of the optimization problem is represented by a
graph, the nodes and edges of which represent decision variables
and decision variable options, respectively. A solution is constructed
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