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a b s t r a c t

System identification, sensitivity analysis, optimization and control, require a large number of model
evaluations. Accurate simulators are too slow for these applications. Fast emulators provide a solution to
this efficiency demand, sacrificing unneeded accuracy for speed. There are many strategies for devel-
oping emulators but selecting one remains subjective. Herein we compare the performance of two kinds
of emulators: mechanistic emulators that use knowledge of the simulator's equations, and purely data-
driven emulators using matrix factorization. We borrow simulators from urban water management,
because more stringent performance criteria on water utilities have made emulation a crucial tool within
this field. Results suggest that naive data-driven emulation outperforms mechanistic emulation. We
discuss scenarios in which mechanistic emulation seems favorable for extrapolation in time and dealing
with sparse and unevenly sampled data. We also point to advances in Machine Learning that have not
permeated yet into the environmental science community.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For many real-world systems with a nonlinear response, model
based tasks such as sensitivity analysis, learning model parameters
from data (i.e. system identification or model calibration), and real-
time control, are hampered by the long runtime of the employed
numerical simulators. Even if runtimes are short, these methods
require a large number of model runs, which can take a prohibitive
long time. One way of speeding up these tasks is to build fast sur-
rogate models, so called emulators, to replace the computationally
expensive simulators. An emulator is a numerical model that is
tailored to approximate the results of a computationally expensive
simulator with a huge reduction in the time needed to run a
simulation (O Hagan, 2006), i.e. it is a metamodel. These ideas also
belong to the technique of Reduced-Order Models (ROM), specially
for models based on Partial Differential Equations (PDE) (Baur et al.,
2014; Quarteroni et al., 2016), and emulation as described below.

To ground ideas, imagine that the flowat the outlet of a drainage
network is limited using a flow limiting gate or by activating water
storage systems (Fig. 1). The position of the gate and the activation
of storage is controlled using a model predictive controller (Xi et al.,

2013). Such a scenario is relevant in performance optimization of
water treatment plants (Fu et al., 2008). The signals used to control
the flows could be the current intensity and duration of rain events
from several rain gauges within the catchment. The controller
needs to estimate an optimal course of action by predicting the
flows induced by the rain and many possible actuations. This
optimization generally requires thousands of model runs, which
can take a prohibitive long timewhen running a physically detailed
simulator of the sewer network, such as a EPA Storm Water Man-
agement Model (SWMM) model (Rossman, 2010). However, the
simulator is just used to estimate the relation between the rain, the
actuation, and the flow. The full details of the simulator might not
be required to obtain an accurate estimation of this relation.
Feedback control might further reduce the required accuracy of the
estimated relation.

Emulation and interpolation are equivalent problems. An
emulator is built using the best available simulator to sample the
space of actuations and/or parameters (henceforth the latter will
include actuations). The training data is then used to build an
interpolation function which should predict values at unseen pa-
rameters with an acceptable degree of accuracy, which is case
dependent. That is, we reconstruct an unknown function
F : Rj g!jþ1/R, that takes a parameter vector of size j g!j and a time
instant, and generates the value of the magnitude of interest. When
this function is evaluated at the inputs used for training, the results* Corresponding author.
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are the same as the training outputs,1 i.e. this is the meaning of
interpolation of the training data adopted herein. Stated in this way,
no distinction is needed between the parameters and the time
components in the input. However, knowing that the data is
generated by a dynamical system, we separate time from the other
parameter components. Thus, we can find one interpolant in time
and one in parameter space, which might be coupled to each other.
This parameter-time coupling emerges naturally in mechanistic
emulation, as will be shown in Sec. 2.2.

When the simulator is based on differential equations, the link
between Gaussian Processes (GP) and linear stochastic differential
equations (SDE) (Albert, 2012; Gonz�alez et al., 2014; Poggio and
Girosi, 1990; Solin, 2014; S€arkk€a et al., 2013; Steinke and
Sch€olkopf, 2008), permits the creation of GP based emulators that
include knowledge about the simulator dynamics; these are called
mechanistic emulators (MEMs). Conceptually, mechanistic emula-
tion seeks a function that interpolates the training data whithin a
class of functions defined by an SDE. The importance of GPs for
MEMs stems from the fact that they are the formal solution of this
SDE. Hence when the simulator is linear the emulator gives exact
results; while for nonlinear simulators, the MEM will provide only
an approximation. Increasing the accuracy of this approximation
and the efficiency of the methods are two fundamental challenges
in GP based emulation (O Hagan, 2006; Rasmussen and Williams,
2006, Ch. 8).

Reichert et al. (2011). enumerated four overlapping approaches
for developing emulators of dynamic simulators:

i) Gaussian Processes
ii) Basis function decompositions
iii) State space transition function approximation

iv) Stochastic linear model conditioned on data using Kalman
smoothing.

In particular approaches i) and iv) are two different imple-
mentations of the same problem (Steinke and Sch€olkopf, 2008).
Roughly speaking the Kalman smoothing algorithm used in iv) is an
iterative implementation of the conditioning of the GP in i). The
iteration in iv) avoids the ill-conditioned covariance matrices
(Hansen, 1998) involved in GP when sampling rates are high
(Reichert et al., 2011; Steinke and Sch€olkopf, 2008) and it is faster
than direct matrix inversion in a serial implementation. The GP
approach i) is better suited for parallelization, speedups and energy
saving via approximated computing (Angerer et al., 2015).

Approaches i) (or iv)) and ii) are similar with respect to their
implementation. That is, approach ii) can be implemented using GP
regression (Rasmussen andWilliams, 2006, sec. 2.7). Therefore, the
essential difference between i) and ii) is that the former explicitly
introduces mechanistic knowledge. It will be shown here that
approach i) is currently constrained to linear mechanistic knowl-
edge, while popular methods based on maximum entropy
(Christakos, 1998; Harte, 2011; Victor and Johannesma, 1986) can
handle nonlinear knowledge. The difference between GP based
mechanistic emulation and maximum entropy methods is that in
the latter, themechanistic knowledge is added as constraints on the
moments of the predictive or posterior distribution, while in the
former its is added as the dynamics of the prior model. Adding
constraints to predictive distributions require expert knowledge
available at the level of the emerging behavior of the simulator,
while adding dynamic information requires knowledge about the
constitutive elements parts of the simulator. The latter is likely to
be readily available from the development of the simulator itself.

Hereinwe compare the performance of GP emulators built using
approaches i), which we call mechanistic emulation, and ii) which
we call data-driven emulation. The basis function that will be used
for data-driven emulationwill be derived solely from the data using

Fig. 1. An imaginary drainage network with flow limiting gate and/or water storage systems. The interesting singal is the level/flow at the outlet of the network, marked with a
circle. Isometric tiles from www.kenney.nl.

1 Herein considered noiseless since they are generated by a deterministic
simulator.
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