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a b s t r a c t

We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses,
open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-
parameterized inverse problems. The framework implements several types of linear (first-order,
second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be
completed prior to parameter estimation to help inform important modeling decisions, such as
parameterization and objective function formulation. Complete workflows for several types of FOSM-
based and non-linear analyses are documented in example notebooks implemented using Jupyter that
are available in the online pyEMU repository. Example workflows include basic parameter and forecast
analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble
generation and management capabilities. These workflows document the necessary steps and provides
insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the
underlying theory of applied uncertainty quantification.

Published by Elsevier Ltd.

1. Introduction

Stakeholders and other consumers of environmental analysis
are increasingly advocating for the quantification of uncertainty in
the analysis provided to them (e.g. Hester and Coleman, 2014;
Uusitalo et al., 2015). For example, environmental models are
increasingly being used to inform the decisions related to resource
management, which in this context, requires that forecasts made
with such models be subjected to uncertainty analysis. Recent ad-
ministrations have explicitly called for uncertainty analysis in
forecasts. They specifically stated “A good analysis provides … the
results of formal sensitivity and other uncertainty analyses.” (Office of
Management and Budget, 2003, p. 3). Further, “If … uncertainty is
reduced and accurately described, then decisions will be made that
tend to make for better use of the resource and increase public benefits
and/or reduce risk.”(National Science and Technology Council, 2007,
p. 12). Recent environmental modeling analyses that include some
form uncertainty treatment include Zhang et al. (2016); Zheng and
Han (2016); Clough et al. (2016); Cho et al. (2016) among others.
Many of these analyses employe models that are amenable to

rigorous uncertainty treatment: the forward execution time of
model is relatively short (possibly due in part to access to high-
performance or high-throughput computing) and/or the number
of uncertain model inputs is relatively small. Indeed, to date,
numerous uncertainty analysis frameworks have been proposed in
the literature, see for example Wu and Liu (2012); Yen et al. (2014);
Lu et al. (2014); Wang et al. (2016); most of these approaches
employ sophisticated Bayesian analysis techniques, but, as a result
of associated computational burden, are limited to models with
short execution times and few uncertain model inputs to treat as
parameters.

Unfortunately, application of uncertainty analysis techniques to
complex, computationally-intensive environmental models (such
as groundwater, surface water, and ecosystem models) is difficult
because of the large numbers of model inputs that are uncertain,
which can easily number in the thousands. This difficulty is com-
pounded by the use of increasingly sophisticated and complex
forward models that require increasingly long execution times. The
result is large computational requirements, which, for many un-
certainty analysis methods, yields an intractable problem. In this
situation, computationally-tractable methods are needed (Hill
et al., 2016). One class of techniques to evaluate model forecast
uncertainty that scales efficiently to high dimensions is linear-
based, first-order, second-moment (FOSM) uncertainty analyses,* Corresponding author.
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also known as Bayes linear theory (Goldstein and Wooff, 2007).
While FOSM-based analyses have been proven successful in the
environmental modeling literature (Glasgow et al., 2003; Moore
and Doherty, 2005; Gallagher and Doherty, 2007; James et al.,
2009; Dausman et al., 2010; Fienen et al., 2010; Lu et al., 2012;
White et al., 2014; Leaf et al., 2015; Brakefield et al., 2015), exist-
ing software tools for practicing environmental modelers to easily
apply these techniques are scant and the understanding required to
use these tools can discourage potential users. Existing software
tools that perform some form of FOSM-based analyses include
PESTþþ (Welter et al., 2015), the PREDUNC and PREDVAR software
suites (Doherty, 2015), UCODE-2014 utility software (Poeter et al.,
2014) and the software OPR-PPR (Tonkin et al., 2007), which was
constructed using the building blocks within the joint universal
parameter identification and evaluation of reliability application
programming interface (JUPITER API) (Banta et al., 2006). Each of
these tools provide FOSM as a statically-compiled executable,
which is not favorable for exploratory analyses as the executable
must be called repeatedly with different inputs and the outputs for
each call must be stored/tracked by the user. Additionally, each of
these existing tools implement at most two or three calculations,
such as parameter uncertainty estimation, forecast uncertainty
estimation, or a form of data worth analysis. This places an addi-
tional burden on users interested in completing a full suite of FOSM
analyses.

Another useful feature of FOSM-based analyses is that they are
considered model-independent because these techniques for un-
certainty quantification only require the sensitivity of model pa-
rameters to model outputs that correspond to observations and
forecasts. Therefore, FOSM-based analyses can be applied to any
computer model for which these derivatives can be estimated or
calculated.

In an effort to remedy the lack of available uncertainty analysis
tools that can be easily and efficiently applied to highly-
parameterized inverse problems, we have developed a python
framework for environmental modeling uncertainty analyses
(pyEMU). The pyEMU framework builds on and is compatible with
the PEST suite of tools (Doherty, 2015) and has been designed to
efficiently implement many forms of FOSM-based analysis in a
single framework while also focusing on improving the user
experience. pyEMU also implements sophisticated parameter
ensemble generation and management capabilities, including the
null-space Monte Carlo analysis of Tonkin and Doherty (2009),
which uses FOSM theory to pre-condition parameter realization to
reduce the computational demand of Monte Carlo analysis.

One of the most attractive uses of FOSM-based analyses is for
estimating parameter and forecast uncertainty prior to a
computationally-expensive inversion effort, which is possible since
linear analyses do not require specific observation values or esti-
mated parameter values. Employing linear analyses prior to
inversion allows practitioners to estimate the value of the inversion
process to reducing forecast uncertainty, as well as to investigate
the sources of uncertainty and the worth of existing and potential
new observations. The results of these pre-inversion analyses can
be used to guide parameterization design, objective function
formulation, and help focus the collection of newdata, which are all
important elements for any environmental modeling analysis.

pyEMU was created with the goal of increasing the number of
environmental modeling analyses that include uncertainty esti-
mates so that model-based resource management decisions can be
better informed. This also provides an exploratory computing
environment for users to build a better understanding of uncer-
tainty analysis concepts. The software was developed in the context
of groundwater modeling, but the techniques are general and can
be used with any numerical modeling of environmental systems or

others, provided that themodel can be driven through text files and
that model results can be read from files without manual user
intervention.

2. Theory

pyEMU implements several types of linear parameter and pre-
dictive uncertainty analyses, including:

� Schur's complement for conditional uncertainty propagation
(Koch, 1988; Golub and Van Loan, 1996; Doherty, 2015),

� error variance analysis (Moore and Doherty, 2005; White et al.,
2014; Doherty, 2015), including the calculation of parameter
identifiability (Doherty and Hunt, 2009; Hill, 2010; Doherty,
2010b), and

� Null Space Monte Carlo (Tonkin and Doherty, 2009).

A brief description of the theory supporting linear-based un-
certainty analyses is presented. The interested reader is referred to
Doherty (2015) as well as references cited herein for a more com-
plete and rigorous treatment of these concepts.

2.1. Schur's complement

Schur's complement for linear uncertainty analyses can be
viewed as a form of Bayes equation under the assumptions of a
linear model and multivariate Gaussian distributions to describe
stochastic character of parameters, forecasts, and observation noise
(Tarantola, 2005; Fienen et al., 2010; Doherty, 2015). Briefly, the
posterior parameter covariance matrix, Sq estimated with Schur's
complement is:

Sq ¼ Sq � SqJ
T
h
JSqJ

T þ Sε

i�1
JSq (1)

where Sq is the prior parameter covariance matrix, Sε is the
epistemic observation noise covariance matrix, and J is the Jacobian
matrix of partial first derivatives of observations with respect to
parameters. This equation highlights the behavior of the inversion
process. The first term represents the parameter uncertainty prior
to inversion, and the second term encapsulates the inversion pro-
cess, through the Jacobian matrix and both parameter and obser-
vation covariance, as mapping of information from observations to
parameters. Depending on which data are collected and their level
of certainty, the inversion process should result in a decrease in
parameter uncertainty.

Note Eq. (1) expects the user to codify their understanding of the
uncertainty in the model parameters e the uncertainty that exists
in the parameter before the model is used e in the prior parameter
covariance matrix (Sq), which is a component of a Bayesian prior
description of the parameters. The process of specifying a prior is a
foundational part of Bayesian analysis. In this way, the Bayesian
form of FOSM analysis is represented by Eq. (1). Note that the
Bayesian formulation in pyEMU differs from the forms of FOSM
analyses implemented in the OPR-PPR program (Tonkin et al.,
2007), UCODE-2014 (Poeter et al., 2014) or the JUPITER API (Banta
et al., 2006), which instead implement the inclusion of prior
parameter information through the use of prior information
equations, rather than through explicit specification of a prior
parameter covariance matrix.

The Jacobian matrix is typically calculated using a finite-
difference approximation
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