
SoftwareX 6 (2017) 255–260

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

The Sound Design Toolkit
Stefano Baldan a,*, Stefano Delle Monache a, Davide Rocchesso a,b

a Department of Architecture and Arts, Iuav University of Venice, Dorsoduro 2206, 30123, Venice, Italy
b Department of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123, Palermo, Italy

a r t i c l e i n f o

Article history:
Received 18 January 2016
Received in revised form 14 November
2016
Accepted 9 June 2017

Keywords:
Sonic interaction design
Sound synthesis
Procedural audio

a b s t r a c t

The Sound Design Toolkit is a collection of physically informed sound synthesis models, specifically
designed for practice and research in Sonic Interaction Design. The collection is based on a hierarchical,
perceptually founded taxonomy of everyday sound events, and implemented by procedural audio algo-
rithms which emphasize the role of sound as a process rather than a product. The models are intuitive to
control – and the resulting sounds easy to predict – as they rely on basic everyday listening experience.
Physical descriptions of sound events are intentionally simplified to emphasize the most perceptually
relevant timbral features, and to reduce computational requirements as well.

© 2017 Published by Elsevier B.V.

Code metadata

Current code version 075
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-16-00016
Legal Code License GPL
Code versioning system used git
Software code languages, tools, and services used C
Compilation requirements, operating environments & dependencies Compilation: Gnu Make. Environments: Cycling ’74 Max (Win/Mac)

and PureData (Win/Mac/Linux)
If available Link to developer documentation/manual https://github.com/SkAT-

VG/SDT/releases/download/075/SDT_APIdoc-075.pdf
Support email for questions stefanobaldan@iuav.it

Software metadata

Current software version 075
Permanent link to executables of this version https://github.com/SkAT-VG/SDT/releases/download/075/SDT-075.zip
Legal Software License GPL
Computing platforms/Operating Systems Linux, OS X, Microsoft Windows
Installation requirements & dependencies none
If available, link to user manual — if formally published include a
reference to the publication in the reference list

none

Support email for questions stefanobaldan@iuav.it

* Corresponding author.

E-mail addresses: stefanobaldan@iuav.it (S. Baldan), sdellemonache@iuav.it
(S. Delle Monache), roc@iuav.it (D. Rocchesso).

1. Motivation and significance

The Sound Design Toolkit (SDT) is a software package providing
a set of perceptually founded sound models, for the interactive
generation of a variety of basic and complex acoustic phenomena
such as interactions between solid objects, interactions involving
liquids or gasses, andmachines. The SDT can be framed as a virtual

https://doi.org/10.1016/j.softx.2017.06.003
2352-7110/© 2017 Published by Elsevier B.V.

https://doi.org/10.1016/j.softx.2017.06.003
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2017.06.003&domain=pdf
https://github.com/ElsevierSoftwareX/SOFTX-D-16-00016
https://github.com/SkAT-VG/SDT/releases/download/075/SDT%5FAPIdoc-075.pdf
https://github.com/SkAT-VG/SDT/releases/download/075/SDT%5FAPIdoc-075.pdf
mailto:stefanobaldan@iuav.it
https://github.com/SkAT-VG/SDT/releases/download/075/SDT-075.zip
mailto:stefanobaldan@iuav.it
mailto:stefanobaldan@iuav.it
mailto:sdellemonache@iuav.it
mailto:roc@iuav.it
https://doi.org/10.1016/j.softx.2017.06.003


256 S. Baldan et al. / SoftwareX 6 (2017) 255–260

Foley box, filled with a rich palette of virtual noisemakers, readily
available to the sounddesigner to sketch andprototype sonic inter-
active behaviors [1]. The tools of the kit are physics-based procedu-
ral audio models [2], designed from first principles and exhibiting
physicallymeaningful parameters. The natural application frame is
to be found in sound design for multisensory interactive systems
(e.g., games) where action–sound behaviors are more important
than sounds per se.

The sketching and prototyping character of the SDT emerged
out of more than ten years of research in sound synthesis and
design [3]. The initial collection of sound models was developed
within the EU project Sounding Object (SOb) as a set of externals
(plug-ins) and patches (programs) for Pure Data,1 a widely used
open source visual language. Over the years, many explorations in
sonic interaction design pushed the development of a collection
of sound models and control layers that would go beyond the
musical metaphor, and respond to the requirements of design
thinking and practice [1]. The whole package was ported to the
Max environment,2 a commercial visual programming language
made by Cycling ’74, similar to Pure Data, yet offering a richer
graphical user interface and a larger set of features [4].

In the scope of the research activities of the ongoing EU project
SkAT-VG (Sketching Audio Technologies using Vocalizations and
Gestures),3 the SDT software architecture has been deeply revised
and the palette of sound models further extended. The collection,
already including impact, friction and derived processes such as
crumpling, rolling and bouncing, has been expanded with the
families of aerodynamic interactions (continuous turbulences, ex-
plosions), liquids, andmachines (combustion engines, DCmotors).
The aim is to have a palette of sounding objects to cover a relevant
mixture of acoustic phenomena, as they are found in major appli-
cations of sound design.

The framework has been developed according to an ecological
approach to everyday listening, and organized to reflect the cur-
rent knowledge on the perception and categorization of everyday
sounds [5,6]. Indeed, the base assumption is that humans hear
sound events rather than sounds per se, being able to extract mean-
ingful information about their surroundings from their everyday
listening experience [7].

The SDT synthesizersmake use of physically informed procedu-
ral audio algorithms [2], which generate sound from a simplified
computational description of the sound producing event, rather
than relying on sample-based techniques and wavetable manipu-
lation. The simplification is instrumental to achieve a two-folded
objective: 1) providing an affordable environment for real-time
applications on ordinary computer and embedded systems, and 2)
cartoonification, that is the improvement of perceptual clarity and
understanding by means of simplified auditory representations
(i.e., cartoon sounds), through the exaggeration of their salient
features [8].

For instance, the pitched and ‘‘blooping’’ sound generated by an
air bubble in water can be approximated by a sinusoidal oscillator
with decreasing amplitude and rising frequency, instead of trying
to faithfully model the complex fluid-dynamics involved in the
process. Although heavily simplified, the model is nevertheless
informed by physics, but at a higher level of abstraction: Reso-
nant frequency and decay time of the digital oscillator depend
on the radius of the simulated bubble, as it would happen in the
corresponding real world phenomenon. The cartoonified bubble
model can therefore be controlled by physically relevant param-
eters while retaining and exaggerating the key features of the

1 http://puredata.info.
2 http://cycling74.com.
3 http://skat-vg.eu.

original sound [9]. This approach emphasizes the role of sound as
a behavior, as a process rather than a product.

Certainly, the SDT is not the only software package available
for procedural sound synthesis and design. The prominent work
by Andy Farnell [2], available as a collection of Pure Data patches,
shares with SDT the same philosophy of synthesizing sounds by
designing behaviors and processes. Farnell proposes a loose orga-
nization of models that are entirely expressed in Pure Data visual
language, thus relying on that hosting environment.

Pruvost and colleagues recently proposed a procedural audio
framework for the physics-based sound synthesis of solid interac-
tions [10]. Similarly to the SDT, this system exploits the action–
object paradigm for continuous control and sound synthesis, yet
facilitating perceptual relevance rather than physical accuracy.
In addition, the real-time audio generation is driven by a game
engine. The software package, however, has not been released to
the public.

The French company Audiogaming4 developed an interesting
proprietary bundle providing a wide palette of environmental pro-
cedural audio plugin units.5 Their sound synthesizers make use of
a mixed approach of physical sound modeling and wavetable ma-
nipulation. In particular, the software package has been optimized
to work with audio middleware solutions for game engines.

Finally, there are open-source libraries for audio signal process-
ing and algorithmic synthesis that include physics-based sound
synthesis modules, the most widely known being STK [11]. This
is oriented to the development of music synthesis and audio pro-
cessing software, and it offers a wide range of software objects,
ranging from simple filters to full-scale synthesizers. It definitely
lacks the taxonomic organization of SDT, and it is more suitable for
computer music programmers than for sound designers.

Several strategies and techniques have been proposed to make
the high-dimensional spaces of synthetic sounds easier to explore
interactively, and directly exploitable in human–machine inter-
faces (see [12] for a survey). Although considerable effort has been
put to expose model parameters that are meaningful to humans,
the so-called mapping layer is left at the periphery of the SDT, and
strategies for mapping gesture to sound are not described in this
paper.

2. Software description

2.1. Software architecture

The system architecture follows a modular and hierarchical
structure, composed of three layers:

1. A core library coded in ANSI C, with few and widely sup-
ported dependencies, exposing a clean and streamlined API
to all the implemented soundmodels, sound processors and
audio feature extractors;

2. A set ofwrappers forMax (version 6 or above) and PureData,
providing access to most of the SDT framework features by
means of externals;

3. A collection of Max patches and help files, providing a user-
friendly GUI and an extensive user documentation for the
whole framework.

The core components of SDT are written following the princi-
ples of object-oriented programming. Each component consists of
an opaque data structure, defined as a type and storing the internal
state of the object (acting as a class), and a collection of functions
operating on that data type (acting as object methods). The header

4 http://www.audiogaming.net/.
5 http://lesound.io/.

http://puredata.info
http://cycling74.com
http://skat-vg.eu
http://www.audiogaming.net/
http://lesound.io/


Download English Version:

https://daneshyari.com/en/article/4978408

Download Persian Version:

https://daneshyari.com/article/4978408

Daneshyari.com

https://daneshyari.com/en/article/4978408
https://daneshyari.com/article/4978408
https://daneshyari.com

