Accepted Manuscript

Title: Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil

Authors: Mohammad-Saeed Safdari, Hamid-Reza Kariminia, Mahmood Rahmati, Farhad Fazlollahi, Alexandra Polasko, Shaily Mahendra, W. Vincent Wilding, Thomas H. Fletcher

PII:	S0304-3894(17)30636-2
DOI:	http://dx.doi.org/10.1016/j.jhazmat.2017.08.044
Reference:	HAZMAT 18809
To appear in:	Journal of Hazardous Materials
Received date:	9-2-2017
Revised date:	6-7-2017
Accepted date:	15-8-2017

Please cite this article as: Mohammad-Saeed Safdari, Hamid-Reza Kariminia, Mahmood Rahmati, Farhad Fazlollahi, Alexandra Polasko, Shaily Mahendra, W.Vincent Wilding, Thomas H.Fletcher, Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleum-hydrocarbon contaminated soil, Journal of Hazardous Materialshttp://dx.doi.org/10.1016/j.jhazmat.2017.08.044

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Development of bioreactors for comparative study of natural attenuation, biostimulation, and bioaugmentation of petroleumhydrocarbon contaminated soil

Mohammad-Saeed Safdari^{*1}, Hamid-Reza Kariminia², Mahmood Rahmati¹, Farhad Fazlollahi³, Alexandra Polasko⁴, Shaily Mahendra⁴, W. Vincent Wilding¹, Thomas H. Fletcher¹

¹Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA

² Department of Chemical & Petroleum Engineering, Sharif University of Technology, Tehran, Iran
³ Department of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
⁴ Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095,USA

* Corresponding author, E-mail: <u>safdari@byu.edu</u>

Highlights

- Bioremediation of hydrocarbon contaminated soil under four modes investigated.
- Biostimulation-bioaugmentaion mode showed the highest hydrocarbon removal.
- The Monod model fits the TPH data much better than first-order model.

Abstract

Bioremediation of soil and groundwater sites contaminated by petroleum hydrocarbons is known as a technically viable, cost-effective, and environmentally sustainable technology. The purpose of this study is to investigate laboratory-scale bioremediation of petroleum-hydrocarbon contaminated soil through development of eight bioreactors, two bioreactors for each bioremediation mode. The modes were: (1) natural attenuation (NA); (2) biostimulation (BS) with oxygen and nutrients; (3) bioaugmentation (BA) with hydrocarbon degrading isolates; (4) a combination of biostimulation and bioaugmentation (BS-BA). Total petroleum hydrocarbons Download English Version:

https://daneshyari.com/en/article/4979083

Download Persian Version:

https://daneshyari.com/article/4979083

Daneshyari.com