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A global grid refinement solver implementation for the Iso-Viscous-Rigid Reynolds equation with cavitation
(mass-conservation) using the Fischer-Burmeister equation for complementarity is presented and shows a quasi
linear time complexity. The global grid refinement strategy allows a fast and stable convergence. It is applied to
several examples of dimple textured flat/parallel surfaces in order to, first illustrate the algorithm performance,
and second, to point out discretisation error issues which may occur for textured surfaces and justify the need of

an efficient numerical method to solve such cases.

1. Introduction

Power loss and lubricant consumption are the first targets of engine
optimisation. A typical example is the cylinder liner - piston ring contact.
In addition to ‘classical’ design parameters such as the ring tension, ring
width, lubricant viscosity, etc. surface texturing is used [1-3]. Multigrid
calculation techniques have been adapted to the textured Iso-Viscous-
Rigid (IVR) problem [4]. When a micro-geometry (such as the texture)
is considered, cavitation [5-8] may occur inside the contact zone con-
trary to the classical case where a single cavitation boundary occurs at
the contact outlet. In this case, a mass conserving algorithm has to be
used in order to avoid lubricant ‘generation’ [9,10]. The purpose of this
paper is to present for the simplest conditions (steady-state Iso-
ViscousRigid), the implementation of a simple and efficient mass
conserving algorithm for the Reynolds equation with cavitation. Several
applications to dimple textured flat/parallel surfaces are presented
similarly to [11]. Some qualitative trends are extrapolated from these
examples. These examples have two objectives: first, they are used to test
the algorithm performance in terms of calculation time/complexity, and
second, they justify the need of an efficient numerical method such as the
one presented in order to solve fine mesh problems which are required to
avoid discretisation error issues.

The current paper originates from the work of Woloszynski et al. [12]
who present the joint resolution of Reynolds and Fischer-Burmeister
(complementarity) equations [13] and benchmark its efficiency against
other methods. Here, the focus is on a very simple implementation
(around 40 Matlab lines) using the P minus 6 combined unknown. This
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combined unknown has two main advantages: first, the unknowns are
(almost) continuous, second, the data management is trivial and no
switches between unknowns in P or 6 are required. A grid refinement
strategy is used to converge the cavitation boundary using an almost
constant (and limited) number of iterations. This grid refinement (from
coarse to fine) is not a Multigrid strategy where fine levels communicate
with coarse ones. It only looks like the Full-Multi-Grid strategy where the
problem is solved on finer and finer meshes. The advantage of the grid
refinement strategy is that the pressurized zone frontier has only very
limited displacements on every level which significantly stabilizes and
accelerates the convergence. Alternative mass conserving algorithms for
the Reynolds equation with cavitation may use finite elements [14] and
[15], or finite volume techniques [16].

2. Method

Two equations are solved simultaneously: the Reynolds equation and
the Fischer-Burmeister equation (complementarity). H is the film thick-
ness, P is the pressure, X is the sliding direction, Y is the direction
perpendicular to the sliding direction, 6 is the void fraction.
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Using finite differences, these two equations are discretised

Received 24 February 2017; Received in revised form 4 October 2017; Accepted 8 October 2017

Available online 12 October 2017
0301-679X/© 2017 Elsevier Ltd. All rights reserved.


mailto:nans.biboulet@insa-lyon.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.triboint.2017.10.008&domain=pdf
www.sciencedirect.com/science/journal/0301679X
http://www.elsevier.com/locate/triboint
https://doi.org/10.1016/j.triboint.2017.10.008
https://doi.org/10.1016/j.triboint.2017.10.008
https://doi.org/10.1016/j.triboint.2017.10.008

N. Biboulet, A.A. Lubrecht

| A S T S —
L4

Fig. 1. 1D global grid refinement example.
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(assuming a constant mesh size A, N points in each direction if the
domain is square) and a local linearisation are used (jacobian coefficients
are calculated from the partial derivatives of equations (1) and (2) with
respect to P; and 6). r are the residuals of equations (1) and (2) and 6 are
the corrections to be applied to the unknowns P and 6. For IVR contacts,
Ap and A, are calculated only once because they only depend on the
geometry. k designates an index in the jacobian matrices (A and C)
whereas i and j designate respectively the point indexes in the X and Y
directions.

The equations (3)-(11) describe how the system is solved. The final
system which is used is written in equation (11); this is a square N2xN?
system. On the left hand side there is the system matrix times a correction
vector §; on the right hand side, there is a residual vector r. To define the
system matrix, four intermediate matrices are used: Ap, Ay (corre-
sponding to an upwind discretisation for a positive speed), Cp, Cy. These
four matrices are defined in equations (3)-(8). However, each matrix has
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