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A B S T R A C T

The contact problem of a rough, rigid surface with an elastic or viscoelastic incompressible semi-infinite body is
studied in this paper. The problem is solved using a Boundary Element Method coupled with a conjugate
gradient method. Viscoelasticity is taken into account with a ‘State Variable’ approach, making it possible to
tackle the transient problem efficiently. The results are compared against Persson's theory of transient
viscoelastic contact, showing good agreement in terms of contact area ratio and friction coefficient.

1. Introduction

Predicting the contact surface and friction of rubber materials on a
road is of critical interest for the tire industry. This particular contact
problem is influenced by the viscoelasticity of rubber and by the multi-
scale surface roughness of the road.

There are two main analytical approaches for the contact problem.
The first one is a multi-asperity approach, initiated by the pioneering
work of Greenwood and Williamson [1]. For a Hertzian contact
between a sphere and an elastic half-space analytical solutions exist
for both a normal and a tangential (friction) force [2]. The idea of a
multi-asperity approach is to generalize these relations by considering
an infinite distribution of spherical indentors of different height and
different radii. The radius and height distribution are derived from the
summit height distribution and the summit curvature distribution of
the rough surface under consideration. The approach can be extended
to viscoelastic frictional contacts as in [3]. However multi-asperity
approaches suffer from a major weakness: they do not account for the
influence of the indentors on each other, so they are only valid at small
normal loads.

The second approach is the one initiated in [4]. Normal displace-
ments of the half space are supposed to follow the same Power Spectral
Density as the rough surface. From this hypothesis the normal contact
problem is solved and the friction is deduced in the case of a
viscoelastic half space sliding at constant speed. This model is
analytically exact for full contact but is less precise as the contact ratio
decreases. This defect was modified in [5] to improve results for low
contact ratios and has been widely tested by numerical simulations for
both elastic [6] and viscoelastic contact [7]. Shortly after his 2001

article, Persson adapted the model in [8] to handle transient sliding.
Transient sliding is of interest in tire modeling as the rubber resides in
the contact zone for only milliseconds and slides only millimeters.
Under such conditions steady state modeling is not accurate. It should
be highlighted that in Persson-like approaches the friction is always
deduced from the viscoelastic losses in the half space and that no
contact friction is taken into account.

A review and a comparison of the two approaches is available in [9].
To overcome the limitations of analytical solutions, numerical

simulations are necessary. Numerical simulations are limited by the
fact that a very fine mesh is necessary to handle the different length
scales of the surface roughness. A 3-dimensional mesh would be
excessively big. Using the assumption that the rubber block is very
large compared to the size of the simulation and undergoing small
strains, simplifies the problem. Using Green's functions, the surface
displacements are directly related to the surface stresses, so only the
surface needs to be meshed.

Analyzing 2 or 3 length scales of surface roughness still requires
more than a million degrees of freedom and consequently long
computation times. Typical roads have a surface roughness over more
than 6 length scales, which means the simulations should be very fast
to take into account as many length scales as possible. Using a multi-
level multi-summation technique Brandt and Lubrecht [10] obtain a
reduction of the computational cost from O N( )2 to O N N( log( )), N being
the number of degrees of freedom (DOF). A number of other
techniques have since been developed. Using Fast Fourier
Transforms (FFT) as in [11] allows the same reduction provided the
mesh is regular and periodic. A slightly slower extension to non-
periodic problems is found in [12]. A comparison between multi-level
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and FFT methods is given in [13]. Another approach is to use a mesh
smart enough to reduce the number of DOF without impacting
precision. This is achieved by refining the mesh at the edges of contact
clusters only and keeping a relatively coarse mesh in the inner part.
This ‘Active Sets’ method are developed in [14,15]. Molecular
Dynamics solvers were also developed: GFMD [16,17] and RMD [7].

This paper uses Fast Fourier Transforms with a conjugate gradient
iteration scheme.

2. Numerical model

Firstly, the contact between an elastic half space and a rigid body
without friction is considered. The relation between surface pressure P
and surface normal displacement Uz was first found by Boussinesq [18]
and is given by:
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G is the shear modulus, ν the Poisson ratio, x, y, ξ and η are spatial
variables.

Using the Boussinesq equations Love [19] found the normal
displacements for a uniformly distributed pressure over a polygonal
region. Discretizing the surface into a uniform mesh with square cells
and using these results leads to Eq. (2).
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Azz is the Influence Coefficient matrix, which is detailed in [20] and
depends on the mesh size. Eq. (2) is a convolution and therefore can be
computed very efficiently in Fourier space. Here the problem is
considered to be periodic, as periodic random rough surfaces will be
used. Using FFT and non-periodic surfaces is also possible with the
appropriate zero-padding [12].

Solving the contact problem means finding the pressure in the
contact zone satisfying:

P U H U H P≥ 0 − ≥ 0 = in the contact zone = 0 outside the contact zonez z

(3)

Uz is the normal displacement calculated from the pressure (Eq. (2))
and H is the rigid substrate height map.

An efficient and easy to implement way to find P is to use an
iterative procedure, such as the conjugate gradient method [21,14,15].
For a contact problem the procedure is slightly different from a
classical conjugate gradient as the contact surface is not constant.
One solution is to solve for a fixed contact surface and change the
contact surface by removing the points with negative pressures and
including the points where the two surfaces interpenetrate. Then solve
again and continue the loop while the contact surface is not constant.
This procedure guarantees the existence and uniqueness of the solution
and convergence [20]. It is rather slow though, as the Conjugate
Gradient has to be executed several times. The usual solution to avoid
this is to update the contact surface within the Conjugate Gradient
algorithm, between each iteration. This is the solution chosen here.

2.1. Viscoelasticity

Discretizing time into small time steps makes it possible to model
the transient response of a viscoelastic half space.

The Zener, or Standard Linear Solid viscoelastic model is used. It
can be represented as a spring and a dashpot connected in parallel
(elastic shear modulus G1, viscosity η1), connected in series to another
spring (modulus G0) - see Fig. 1.

Rubber is considered as an incompressible material. An incom-
pressible viscoelastic material with a Zener law follows the differential
Eq. (4), where s and e are the deviatoric parts of the stress and strain

tensors, the dot denotes a time derivative. This differential formulation
for viscoelasticity is strictly equivalent to the integral formulation as
mentioned in [22].
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Now let us consider a contact problem with a normal pressure
imposed on an incompressible viscoelastic half space. This kind of
problem can be treated using functional equations [22]. In the Laplace
domain, the problem is equivalent to an elastic contact problem, which
means it is possible to use analytical elastic solutions, in particular the
Boussinesq potential. Going back to the real domain, the viscoelastic
Boussinesq equation is given by Eq. (5).
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For an implementation in BEM, Eq. (5) is discretized in space and
leads to Eq. (6), where i, i′, j and j′ denote the row and column of the
considered mesh cell.
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Discretizing time t in the previous equation and removing the sum
notations leads to:
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PΔ and UΔ are the variation of pressure and displacement between
time step t and time step t t+ Δ .

A generalized Zener model is a combination of different Zener
models connected in parallel, plus a branch with just one spring G∞. It
is necessary to use it for rubber in order to model its behavior over a
large range of frequencies. The displacement in each branch is the
same and the pressures in each branch add up. Each branch k follows
Eq. (7). It leads to Eq. (8).
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It is then possible to use the ‘elastic’ Conjugate Gradient contact
solver using P′, U ′z and H′ instead of P, Uz and H according to Eq. (9).

This yields Ut t+Δ and P∑k t t
k
+Δ , which is the total pressure acting on the

η
Fig. 1. Representation of the Standard Linear Solid. G0 and G1 are the spring stiffness,
η1 the dashpot damping coefficient.
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