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A B S T R A C T

We introduce a corrective function to compensate errors in contact area computations coming from mesh
discretization. The correction is based on geometrical arguments, and apart from the contact area itself requires
only one additional quantity to be computed: the length of contact/non-contact interfaces. The new technique
enables to evaluate accurately the true contact area using a very coarse mesh, for which the shortest wavelength
in the surface spectrum reaches the grid size. The validity of the approach is demonstrated for surfaces with
different fractal dimensions and different spectral content using a properly designed mesh convergence test. In
addition, we use a topology preserving smoothing technique to adjust the morphology of contact clusters
obtained with a coarse grid.

1. Introduction

The roughness of natural and industrial surfaces determines
properties of the mechanical contact between solids: interface stiffness,
true contact area and the morphology of the free interface volume.
Thus the roughness governs many interface phenomena such as
contact electrical resistance [67,76], thermal contact resistance
[41,4], friction [18,6,61], adhesion [23,45], wear [8,2], as well as fluid
transport at contact interfaces [42,51,62,15,16,47]. For most of these
phenomena it is critical to accurately estimate the true contact area for
given thermo-electro-mechanical loads and given roughness of con-
tacting surfaces. It is now well known that a simple load bearing area
model, relying on a geometrical overlap of two rough surfaces
considerably overestimates the true contact area [46,60], and for equal
contact areas, the former results in a much higher transmissivity in
transport problems [15]. Existing analytical models, asperity-based
[27,9,66,38,26,1], as well as Persson's model [50,52] with its adjusted
version [49], rely on a few approximations and thus cannot provide
very accurate results in terms of true contact area over a wide interval
of loading conditions (for a detailed discussion and comparison see
[37,12,44,73,75]).

For these reasons, a numerical analysis, free of restrictive assump-
tions, is now widely used for the study of rough contact. The following
numerical methods are used: the finite element method [46,77], a wide
class of continuum boundary element methods [65,54,55,36], discrete

methods based on molecular dynamics [10,11,71] or basic molecular
dynamics [3,64,45]. Continuummodels are particularly attractive since
they permit to cover a large spectrum of length scales. However, they
are subject to discretization and convergence errors. The former is
related to the finite size of the used grid/mesh, whereas the latter is
related to the strong non-linearity and discontinuous nature [35,21] of
contact problems requiring iterative procedures (Newton-Raphson
method, iterative solvers) to achieve convergence, or in the case of
explicit techniques for both finite element [29] and the Green's
function molecular dynamics [10,11] obtaining the results requires
damping of elastic vibrations. Various continuous numerical methods
in contact mechanics exist [70], among them penalty and barrier
methods, Lagrange multipliers, augmented Lagrangian and other
techniques, which convert the constrained optimization problem to
an unconstrained one (or at least partially unconstrained). Some of
these methods allow accurate satisfaction of contact constraints for a
given discretization whereas others (like penalty or barrier type
method) only approach the exact solution with an accuracy that
depends on the choice of parameters. In addition, different contact
discretization techniques, which integrate contact tractions in the weak
form in the finite-element method, provide varying accuracy and
convergence rates. These depend on the interpolation order of ele-
ments, mesh densities on contacting surfaces and mesh curvature. For
details, see [70,58,22,69,56,72,19] and references therein.

Assuming that the convergence is ensured and that the numerical
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method is accurate enough, the discretization remains the sole limiting
point in achieving accurate results in contact problems. From experi-
ence, it is known that for non-conformal but simple geometries (1D or
2D wave, circle or sphere against a flat surface), a rather dense mesh is
required at the contact interface to track the contact area evolution, see
e.g. [39,40,31,20,77,63]. We also refer to a study of a bi-wavy surface in
contact with a rigid flat [74], in which a very dense grid (4096 points
per side per wavelength) was used, which allowed the authors to reveal
peculiar mean contact pressure behaviour near the percolation point,
which was missed in previous studies. Extrapolating to the case of
“rough” surfaces, we need to ensure accurate discretization of all
harmonics present in the surface spectrum, i.e. the shortest wavelength
λs should be sufficiently discretized to ensure accurate estimation of the
contact area. This statement implies that the surface “roughness”
should be smooth enough (or should be smoothly interpolated from
experimental data [30,77]) and the ratio λ x/Δs , where xΔ is the grid
step, should be kept rather big [73,57]. Importantly, as was demon-
strated in [75], the discretization error is affected not only by the
shortest wavelength λs but also by the longest wavelength λl in the
spectrum,1 since it determines the number of individual macro-contact
clusters (see [48,75]). Thus, since the error in the true contact area is
proportional to the length of the boundary between contact and non-
contact zones, a shorter longer-wavelength, results in more contact
clusters and leads to a higher discretization error. Hence, for any rough
surface with a sufficiently large discrete spectrum, the discretization
requirement may rapidly become a bottle neck in terms of computa-
tional resources. Two alternative solutions can be used: sacrifice the
accuracy by using a coarse mesh and/or use more efficient numerical
methods [54,5] and adapted hardware combining CPU and GPU and/
or parallel algorithms. A notable example, of combining a Green's
function molecular dynamics with computations on GPU enables
researchers to make rough contact simulations on a grid with more
than 17 billion(!) grid points [57].

The true contact area in numerical simulations of contact can be
computed as the total area of surface-faces being in contact plus the
areas associated with nodes on the contact-non contact border. In
spectral methods [65,36] using FFT techniques and in discrete
techniques [10,11] requiring regular discretizations (equally spaced
grid points), the true contact area fraction can be simply computed as a
ratio between all points in contact (points with zero gap and non-zero
pressure) to the total number of points. However, this estimation of the
contact area, in general, overestimates the true solution, which could be
obtained in the continuum limit. The coarser the discretization, the
higher the error: the convergence rate with element size is linear [75].

Here, we suggest an alternative approach that allows an estimation
of the true contact area with high accuracy on a reasonably coarse
mesh, i.e. enabling full representation of the surface spectrum. The
approach is based on a corrective function which uses the length of the
contact/non-contact boundary (or simply the perimeter of contact
clusters). The method was already introduced in [75], but the previous
study lacked a mesh convergence analysis and the corrective factor was
not evaluated. Here, we correct these shortcomings and demonstrate
the accuracy of the suggested technique on several examples.

The paper is organized as follows: in Section 2, all numerical
methods and models are presented: a method used to generate model
roughness in Section 2.1, a spectral method used to solve contact
mechanical problems in Section 2.2. The area-correction method is
described in detail in Sections 2.3 and 2.4. In Section 3, we present
mesh convergence tests and demonstrate the performance of the
approach. A morphology smoothing of contact clusters is briefly
outlined in Section 3.3. A short conclusion is drawn in Section 4.

2. Methods

2.1. Rough surface generation

We use an FFT filtering technique [28] to synthesize an isotropic 2D
random rough surface with prescribed Hurst exponent H (or, equiva-
lently, fractal dimension D H= 3 − ) and cut-offs in the surface
spectrum as was done in [73,75]. Note that we use a periodic surface
resulting in a discrete spectrum. Surfaces with and without plateau in
the power spectral density (PSD) are considered (see [32] for a detailed
discussion of PSD measurements and interpretation). The power
spectral density is defined as the Fourier transform of the auto-
correlation function and using the convolution theorem can be written
through the Fourier transform of the surface z x y( , ):

Φ k k z k k z k k( , ) = ( , ) *( , ),s x y x y x y (1)

where the star denotes the conjugate value and the hat denotes the
Fourier transformed quantity:
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One can compare surfaces with plateau depicted in Fig. 1(c), (e) with
those without it, see Fig. 1(d), (f). The surface PSD is characterized by
the following parameters: a scaling factor Φ0, Hurst exponent H,
absence or presence of a plateau and also two wavenumbers kl and
ks: kl the lowest wavenumber determining the start of a power-law
decaying PSD and ks the highest wavenumber determining the shortest
wavelength present in the spectrum. The mean profile PSD2 for a
surface with and without plateau can be formalized in the following
forms, respectively:
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where k k k= +x y
2 2 , with kx,ky are wavenumbers in x and y directions
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is the mean profile PSD for a given absolute value of the wavevector k
in all directions determined by ϕ. The surface is considered to be
isotropic, so that statistical characteristics of every profile should be
independent of the direction ϕ. Since we deal with a discrete spectrum
the integral in the previous expression should be rewritten as:

∑Φ k
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where n(k) is the number of elements satisfying k k k+ =x y
2 2 2 for all

k k, ∈x y . Because of this discreteness, the accuracy of definition (3)
cannot be satisfied for a single surface. Thus, multiple realizations of
rough surfaces for a given set of parameters k k H, ,l s is needed to
capture the statistical nature of the roughness. It is convenient to
introduce dimensionless wavenumbers k∼, which will be used through-
out the paper:

k kL π L λ= /2 = / ,∼

where λ is the wavelength and L is the length of a side of simulation
box. It means that k∼ is the number of waves per length, and because of
the periodicity this quantity takes only integer values. Some examples

1 For surfaces with a plateau in the surface spectrum, λl corresponds to the shortest
wavelength present in the plateau as in examples shown in Fig. 1(c-e).

2 Lower index “p” is used for profile PSD and lower index “s” is used for surface
spectrum.
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