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A B S T R A C T

In this study, a model for the prediction of the mass transport through ideal mixed matrix membranes (MMMs)
for pervaporation and gas separation processes has been introduced. A Resistance-Based (RB) model was used in
conjunction with a three-directional Finite Difference (FD) numerical solution to derive a semi-empirical model
for calculating the effective permeability of ideal mixed matrix membranes. Predictions of the effective per-
meability obtained with the proposed model were compared with the estimated permeability for ideal MMMs
using numerous analytical solutions such as Maxwell, Lewis-Nielsen, Bruggeman and Hennepe models. The
extended RB model was theoretically able to predict accurately the effective permeability of ideal MMMs over a
large range of filler volume fraction. Higher deviations were observed between the predictions of the extended
RB model and the estimations of the majority of the other models in the case of MMMs containing higher
permeable fillers and larger amount of filler material.

1. Introduction

The theoretical description of the mass transport through mixed
matrix membranes (MMM's) is paramount to optimize the membrane
separation processes via these high performance materials. According
to the solution-diffusion theory, three steps can be used to describe the
mass transport of species within the membrane film: (1) sorption of
species on the feed side of the membrane, (2) diffusion of components
through the membrane, and (3) desorption from the permeate side of
the membrane [1–4]. Therefore, the permeate flux of a component for
pervaporation and gas separation processes is proportional to the par-
tial pressure gradient (or concentration gradient) as the driving force,
the membrane thickness and the permeability of the component.
Moreover, the permeability is the product of the solubility and the
diffusion coefficient of penetrants through the membrane. Eq. (1) gives
the expression of the permeate flux of component m in membrane se-
paration processes. Solubility of a species in a membrane could be de-
fined based on: (1) the equilibrium partial pressure where S, with units
of mol m−3 bar−1, relates the concentration of a species in the sorbed
phase to its equilibrium partial pressure on the feed side, or (2) the mass
concentration of a species where S*, with units of g m−3/g m−3, is the
ratio of the concentration in the membrane to the one in the feed so-
lution. Therefore, the permeability of component m in the membrane

could be expressed using different units (mol m−1 h−1 bar−1 and
m2 h−1) for which the permeability would obviously have different
values. However, the type of driving force (partial pressure or con-
centration gradient) is the determining factor to select the proper units
to express permeability without any impact on the estimation of partial
permeate fluxes (See Eq. (1) where the permeate flux is expressed in
g m−2 h−1).
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Various models such as Maxwell [5], Bruggeman [6], Lewis-Nielsen
[7,8] and Pal [9] have been introduced to estimate the effective per-
meability of ideal mixed matrix membranes for gas separation pro-
cesses. These models are based on the permeability of the continuous
phase (Pc), permeability of the dispersed phase (Pd) and the volume
fraction (ϕ) of the solid fillers within the polymer matrix [10]. Table 1
presents a summary of the analytical models introduced for the esti-
mation of component permeability in ideal MMMs. Among these
models, the Maxwell model is the most commonly used for the pre-
diction of the effective permeability of ideal MMMs for gas separation
applications (Eq. (2)). The Maxwell model was originally presented to
describe the dielectric properties of composite materials containing
spherical particles. However, the Maxwell model is only applicable for
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low amounts of filler loading within the polymer matrix (less than 0.2
volume fraction of the filler) based on the assumption that diffusion in
and around a particle is not affected by the diffusion streamlines around
the neighbouring particles [10].
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In addition, a resistance-based model has been proposed by
Hennepe et al. to predict the effective permeability of permeating
species in a mixed matrix membrane for pervaporation separation (Eq.
(3)) [11,12]. The model was able to predict the separation performance
for the pervaporation of some alcohols from water using zeolite-PDMS
mixed matrix membranes.
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The factor 1.5 in Eq. (3) was added to account for the tortuosity
factor due to the presence of the particles. As a result, the permeability
prediction of the Hennepe's model for an identical permeability of the
components in both phases (Pc = Pd) deviates from the asymptotic
permeability, and the prediction of the effective permeability still re-
mains a function of the filler volume fraction [12]. In addition, a small
error for the determination of the diffusional area in the derivation of
this equation was also made. Indeed, the denominator of the second
term in the denominator of Eq. (3) should be − +P ϕ P ϕ(1 )c d

2/3 2/3 while
excluding at the same time the tortuosity factor of 1.5 [12].

In this work, it was desired to resort to a simple predictive model to
estimate the effective permeability (PEff) of species in ideal MMMs.
Therefore, a Resistance-Based (RB) model has been introduced to esti-
mate the effective permeability of migrating components in a homo-
genously dispersed mixed matrix membrane with the assumption of
ideal polymer-filler interface morphology. In addition, an accurate so-
lution was obtained by finite difference numerical solution (referred as
FD model in this paper) for an identical membrane to predict the ef-
fective permeability of the ideal mixed matrix membranes for different
ratios of the permeability in the dispersed and continuous phases as
well as for different volumetric filler contents within the polymer ma-
trix. Results of the finite difference solution was compared to the RB
model predictions in order to define a correction factor for the RB
model to account for the three-directional (3D) diffusional pathway of
migrating species through MMMs. The simple one-directional RB model
multiplied by the correction factor is referred as “Extended RB model”
in this investigation. The predictions obtained with the Extended RB
model were compared with different analytical solutions (see Table 1)
for estimating the effective permeability of species in ideal MMMs.

2. RB model development for the mass transport through MMMs

In this section, a new semi-empirical model was developed to cal-
culate the effective permeability of species in MMMs with an ideal

Nomenclature

A Area (m2)
b Parameter of Correction Factor Equation (dimensionless)
C Concentration (g m−3)
CM Parameter of Correction Factor Equation (dimensionless)
d Diffusion Pathway (m)
D Diffusion Coefficient (m2 h−1)
H Variable Defined in Eq. (6)
J Permeate Flux (g m−2 h−1)
KH Empirical Constant in Higuchi Model (dimensionless)
L1 Size of the RB Element (m)
L2 Size of the Filler (m)
M Molecular Weight (g mol−1)
m Component
N Number of Nodes
P Permeability (mole m−1 h−1 bar−1)
p Partial Pressure (bar)
P* Permeability (m2 h−1)
Ri Resistance (h bar mole−1)
S Solubility Coefficient (mole m−3 bar−1)
S* Solubility Coefficient (g m−3/g m−3)
t Time (h)
x x Coordinate
y y Coordinate
z z Coordinate

δ Thickness (m)
ϕ Volumetric Filler Content (dimensionless)
τ Correction Factor (dimensionless)

Superscripts

L Left
R Right

Subscripts

c Continuous Phase
d Dispersed Phase
Eff Effective
f Feed
FD Finite-Difference Method
HPF High Permeable Filler
i x Coordinate for Node Position in FD Model
j y Coordinate for Node Position in FD Model
k z Coordinate for Node Position in FD Model
LPF Low Permeable Filler
m Component
MMM Mixed Matrix Membrane
r Relative
RB Resistance-Based Model

Table 1
Predictive models for the relative effective permeability (Pr) of species in ideal MMMs.
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