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a b s t r a c t

A weakly-nonlinear potential theory is developed for the description of deep penetrating pressure
fields caused by single and colliding wave groups of collinear waves due to the second-order non-
linear interactions. The result is applied to the representative case of groups with the sech-shape of
envelope solitons in deep water. When solitary groups experience a head-on collision, the induced due
to nonlinearity dynamic pressure may have magnitude comparable with the magnitude of the linear
solution. It attenuates with depth with characteristic length of the group, which may greatly exceed the
individual wave length. In general the picture of the dynamic pressure beneath intensewave groups looks
complicated. The qualitative difference in the structure of the induced pressure field for unidirectional and
opposite wave trains is emphasized.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The sea surface motions are accompanied by complicated
movements of fluid particles within the entire water column. The
underwater fluid dynamics may have significant effect on sub-
merged constructions, formation of bottom topography peculiar-
ities, sediment transport and so on. Obviously, extreme surface
waves may cause stronger underwater effects; enormous wave
force records at coastal and moored structures are sometimes
reported (e.g. [1]) and are often related to so-called rogue wave
events (see [2]). Thus, the problem of estimation of underwater
extreme pressures and the associated impact on structures has
clear practical importance.

On the other hand, subsurface and bottom pressure sensors are
commonly used for the registration of surface waves in relatively
low-frequency range, from tidal to wind waves. This type of wave
recorders is very appropriate as they do not deface the scenery
in coastal areas and are difficult to be accessed by unauthorized
people (vandal-proof).Wemay speculate that arrays of submerged
probes also could be used for safe and inconspicuous recording of
wind waves.

The inverse problem of an accurate recovery of characteris-
tics of wind waves from the data of subsurface/bottom pressure
measurements is vital. The pressure under very long waves such
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as tides and tsunamis may be assumed hydrostatic; this approx-
imation is sufficient for an accurate reconstruction of the surface
waves from the bottom pressure sensor data, what enables cre-
ating of tsunami early warning networks. However, wind waves
are often not sufficiently long even in the coastal area. Then non-
hydrostatic corrections to the pressure contribute significantly and
the relation between the surface displacement and the pressure at
the location of registration becomes complicated. As the inverse
problem is highly attractive, it has motivated a number of studies.
The linear theory based on the spectral methods was developed
in [3–10], though the importance of nonlinear effects was demon-
strated shortly after. Most of the studies concern shallow water
conditions; it is reasonable that representative solutions such as
uniform waves, shallow water solitons and their interactions are
thoroughly studied [11–19], and model theories are being vali-
dated against the direct solution of hydrodynamic equations.

The solutions of the Laplace equation for potential planar sur-
face waves inevitable possess the feature that each surface wave
harmonic with a given horizontal scale attenuates with depthwith
exactly the same vertical scale. Thus, short waves have no effect
on sufficiently deep water layers. This picture gets broken due to
the nonlinear wave interactions which may lead to the genera-
tion of longer wave components, which penetrate much deeper
into the water bulk. This mechanism was suggested by Longuet-
Higgins [20] to explain the seismic noise generated bywindwaves,
which would not produce noticeable effect on the sea bottom over
relatively deep areas in the linear regime. Longuet-Higgins [20]
suggested a simple solution for two counter propagating uniform
waves (i.e., standingwaves),whichdue to thenonlinear interaction
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produce a harmonic with the frequency ω0 + ω0 = 2ω0 and the
wavenumber k0 − k0 = 0. As a result, the second-order pressure
does not attenuate at large depth at all. A more general treatment
of the problem when the waves obey some spectrum was given
by Hasselmann [21]. The approach by Longuet-Higgins [20] seems
to prevail in the literature probably due to its simplicity. A review
of the nonlinear sea wave interaction theory in the context of a
seismic wave generation may be found in monograph by Kibble-
white &Wu [22]. The effect of sea surface waves on a seismic noise
is usually considered in the statistical sense, when the generated
seismo-acoustic spectra are discussed.

In this paper we consider the underwater pressure fields be-
neath isolated intense wave groups. The groups own a new char-
acteristic length scale, which is typically O (10) times larger than
the wave length. Due to the nonlinear wave interactions the mod-
ulated waves generate large-scale perturbations which decay with
depth with the typical scale of the group length [23–26]. In that
way, a given water basin in terms of group lengths is not as deep
as in terms of individual wave lengths.

The group structure of sea waves is specified not solely by the
given wave spectrum, but also by the dynamical effects of the
modulations. In particular, in deep water regions intense waves
tend to split into thewave groups characterized by an approximate
balance of dispersive and nonlinear effects (i.e., envelope solitons,
nonlinear solitary groups, [27,28]). The experimental observations
of intense solitary groups are reported in [29,30]. The balance
between the nonlinearity and dispersion allows the groups to
approximately preserve the shape for long time. Therefore, besides
regular waves and shallow water solitons, the nonlinear solitary
groups are a representativewave structure in the sea. The pressure
induced by these groups is in focus of this study.

Our approach is not limited by the simplified formulation sug-
gested by Longuet-Higgins [20]. The wave dispersion is taken into
account by exact solution of the Laplace equation for potential
waves. The surface boundary conditions which correspond to the
nonlinearly generated long perturbations are obtained with the
help of the weakly nonlinear asymptotic approach for modulated
wave trains. The focus on narrow frequency spectra allows us to
simplify the approach byHasselmann [21] and to obtain eventually
closed form expressions for the solution whichmay be straightfor-
wardly solved numerically with the help of the Fourier transform
subroutine. For the case of wave groups having the shape of the
envelope solitons of the nonlinear Schrödinger equation, analytic
solutions in terms of special functions are obtained.

The paper is organized as follows. The classic framework of po-
tential planarwaterwaves is given briefly in Section 2. In particular
the solution of the Laplace equation with the help of the Fourier
method is outlined. The asymptotic theories for the large-scale
perturbations induced by unidirectional and counter propagating
modulated waves are given in Section 3. They determine the sur-
face boundary conditions for the Laplace equation. The details of
the derivation of the theory for opposite waves are collected in
Appendix A. The resulting formulas for the underwater dynamic
pressure are given in Section 3. They require the knowledge of the
space–time evolution of the squared wave envelope. The particu-
lar case of the wave groups having sech-shapes of the nonlinear
Schrödinger equation envelope solitons is discussed in Section 4 in
details.

2. The pressure field in the volume of potential surface waves

We confine the consideration to the framework of the two-
dimensional potential Euler equations for ideal incompressible
inviscid fluid. Then the motions of the fluid in the water volume

from the surface η (x,t) to the flat bottom z = −h are governed by
the Laplace equation on the velocity potential ϕ(x, z, t),
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The boundary condition at the bottom requires a zero vertical
component of the velocity,
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which in the infinitely deep water limit, h → ∞, transforms to the
condition ϕ → 0. The surface boundary condition is nonlinear and
consists of the dynamical and kinematic conditions respectively,
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where g is the acceleration due to gravity.
If the velocity potential at the rest water level is specified,

Φ(x, t) ≡ ϕ(x, z = 0, t), then the potential in the entire volume
occupied by water may be straightforwardly obtained with the
help of the Fourier method,

ϕ (x, z, t) = F̂−1
{
Φ̂ (ω, k)

cosh (k (z + h))
cosh (kh)

}
(5)

where the double Fourier direct and inverse transforms are defined
in the form

F̂ {r (x, t)} ≡
1

(2π)2

∫∫
r (x, t) e−iωt+ikxdxdt = r̂ (ω, k) ,

F̂−1 {r̂ (ω, k)} =

∫∫
r̂ (ω, k) eiωt−ikxdωdk = r (x, t) . (6)

In (6) the integration is assumed to perform over infinite do-
mains in time and space. One may note that the Laplace equation
does not contain time dependence, thus the solution inherits it
from the surface velocity potential. Also, the double Fourier trans-
formation may be replaced by the transformation in either time or
space if the relation between the wavenumbers and frequencies is
given.

The present study is focused on relatively large depth. In the
limit of very deep water the vertical structure of the modes may
be simplified, and then formula (5) transforms to

ϕ (x, z, t) = F̂−1
{
Φ̂ (ω, k) e|k|z

}
. (7)

When the pressure at the surface is assumed to be zero, the total
pressure in the water volume Ptot is defined by the Bernoulli law
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where the constant ρ is the water density (Ptot = 0 at z = η
according to (3)). The normalized dynamic pressure which char-
acterizes the excess of the total pressure over the hydrostatic
pressure is given by
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The two last terms in (9) are nonlinear and may be neglected
compared to the time derivative of ϕ, if the wave amplitude is
small. In what follows the dynamic pressure will be approximated
by the leading-order part of (9), i.e.

p ≈ −
∂ϕ

∂t
. (10)
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