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h i g h l i g h t s

• Turbulent far-wake flow down-
stream of a cylinder is analyzed by
a generalized similarity method.

• This method is then applied to the
problem of an array of cylinders.

• Both the turbulent and laminar far-
wake flow cases are analyzed for the
latter problem.
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a b s t r a c t

The nonlinear momentum equation for turbulent far-wake flow downstream of a cylinder is derived
from the Reynolds averaged Navier–Stokes equations and solved by iteration and generalized similarity
solution. The first-orderOseen-type linearization yields for thewake boundary layerwidth a series,whose
terms vary as x 1/2, x−1/2, x−3/2 etc., where x is the streamwise distance from the center of cylinder. The
velocity deficit from the free-stream velocity is similarly obtained as a series and the iteration is carried
over to a second-order. Thismethod is then applied to the problem of an array of cylinders. Both turbulent
and laminar far-wake flow cases are analyzed. The series solutions broadly extend the earlier findings. The
first-order solutions agree in form with those stated in the book of Schlichting (1979).
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1. Introduction

Theoretical study of two-dimensional far-wake flow down-
stream of cylindrical bluff-bodies has attracted much attention of
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Nomenclature

A, B, C0-4,D, K constants
CD drag coefficient
d diameter of cylinder
p time-averaged hydrostatic pressure
U free-stream velocity
u, v instantaneous streamwise and transverse velocity

components, respectively
u, v time-averaged values of u and v, respectively
u′, v′ fluctuations of u and v, respectively
u0 peak velocity deficit
u1 time-averaged velocity deficit
x longitudinal distance
y transverse distance
α exponent
δ half-width of wake
ε eddy viscosity
ε0 constant
φ function of velocity deficit
η y/δ
λ spacing
ψ function of Reynolds shear stress
υ coefficient of kinematic viscosity of fluid
σ pressure plus normal Reynolds stress
ξ x1/α

several authors due to varied analytical treatments of the general
wake flow phenomenon. In the far-wake flow region, both laminar
and turbulent flow cases are succinctly discussed by Schlicht-
ing [1]. In zero-pressure gradient laminar flow, under the first-
order Oseen-type approximation of the nonlinear Navier–Stokes
equations, called the Prandtl equations, it was shown by order of
magnitude analysis that the half-width δ of the wake boundary
layer varies as x1/2 and the velocity deficit u1 varies as x−1/2. Here, x
is the streamwise distance (along the free-stream) from the center
of cylinder, u1 = U − u, U is the free-stream velocity and u
is the time-averaged velocity in x-direction in the wake domain.
In these theories, the laws of variations of δ and u1 with x hold
for both laminar and turbulent flow cases. The variation of u1
with the transverse distance y is approximately of the Gaussian
form. Abandoning the concept of the Oseen-type linearization, the
nonlinear laminar far-wake flow was analyzed by several authors
[2–8]. The study of the turbulent flow case by George [9] was
however based on basic similarity considerations. In addition,
studies on laminar flow structures around circular cylinders were
conducted by Alfonsi et al. [10,11].

In this study, the solutions for the far-wake flows downstream
of cylinders are obtained by using the generalized Clarkson–
Kruskal similarity method [12], as in the case of a circular far-wake
flowdownstreamof a sphere [13]. Both laminar and turbulent flow
cases are treated. The governing nonlinearmomentum equation in
turbulent flow case is derived from the Reynolds averaged Navier–
Stokes (RANS) equations. In the first-order Oseen-type approxi-
mation, the self-similarity of the equation requires the pressure
gradient to be zero and the half-width δ of wake to satisfy a non-
linear differential equation. The equation of δ is solved in a general
series form. This solution is then adopted for two-dimensional
wake flow problem and the solution for the velocity deficit u1
is obtained. The variation of velocity deficit u1 in y-direction has
a Gaussian form. As in Schlichting [1], the flow past an array of
cylinders is then analyzed by using the presentmethod. Finally, the
laminar wake flow problem is also solved. In the last two cases, the
first-order solutions agree with those stated in Schlichting [1].

Fig. 1. Schematic of two-dimensional wake flow downstream of a circular cylinder.

2. Momentum equation of wake flow

Two-dimensional wake flow past a circular cylinder is shown
schematically in Fig. 1. The free-stream flow velocity is assumed to
be U emerging from x → −∞. In turbulent wake flow region, at
any point P (x, y), is governed by the continuity equation and the
RANS equation in x-direction:

ux + vy = 0 (1)

u · ux + v · uy = −px −
(
u′v′

)
y + υuyy −

(
u′u′

)
x (2)

where (u, v) and (u′, v′) are the time-averaged and fluctuations of
instantaneous velocity components (u, v) at the point (x, y), respec-
tively, p is the time-averaged hydrostatic pressure normalized by
mass density of fluid and υ is the coefficient of kinematic viscosity
of fluid. The subscripts refer to partial derivatives. In thewake flow
region, the u is less than U and the u1 is small as compared to U.
Using Eq. (1), Eq. (2) yields the nonlinear momentum equation as

− U(u1)x + px +
(
u′v′

)
y + υ(u1)yy +

(
u′u′

)
x

= −u1(u1)x + (u1)y

∫ y

0
(u1)xdy (3)

To a first-order of u1, the above equation yields the Oseen-type
approximate one-dimensional momentum equation:

− U(u1)x + px +
(
u′v′

)
y +

(
u′u′

)
x = −υ(u1)yy (4)

Let y = ±δ(x) be the equation of the wake boundary layer
(Fig. 1). Experiments by Schlichting [14] and Reichardt [15] re-
vealed that the flow is self-similar beyond some streamwise dis-
tance from the cylinder. For the solution of Eq. (4), a generalized
Clarkson–Kruskal self-similar solution is sought in terms of the
nondimensional variable η = y/δ(x) in the following forms [12]:

u1 = u0 (x) φ (η) ,−u′v′ = [u0 (x)]2ψ (η) ,
(
p + u′u′

)
x

= [u0 (x)]2σ (η) (5)

where u0 is the peak velocity deficit and φ, ψ and σ are the
functions of velocity deficit, Reynolds shear stress and pressure
plus normal Reynolds stress, respectively.

Substitution of Eq. (5) into Eq. (4) and multiplication by δ/u2
0,

results in following:

− U
(
δ

u2
0

·
du0

dx
φ −

η

u0
·
dδ
dx
φ′

)
− ψ ′

+ δσ = −
υ

u0δ
φ′′ (6)

where prime and double prime denote first and second derivative
of the functions, respectively. The coefficient υ/(u0δ) containing
kinematic viscosity on the right hand side of Eq. (6) is negligible
due to turbulent flow case. Further, for a self-similar solution to
exist, σ must vanish, as δ ̸= constant. It implies that

(
p + u′u′

)
x
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