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velocity deficit from the free-stream velocity is similarly obtained as a series and the iteration is carried

X B over to a second-order. This method is then applied to the problem of an array of cylinders. Both turbulent
eywords: . . X P

2-D wake and laminar far-wake flow cases are analyzed. The series solutions broadly extend the earlier findings. The

Clarkson—Kruskal similarity method first-order solutions agree in form with those stated in the book of Schlichting (1979).
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Nomenclature

A, B, Co4, D, K constants

drag coefficient

diameter of cylinder

time-averaged hydrostatic pressure
free-stream velocity

instantaneous streamwise and transverse velocity
components, respectively
time-averaged values of u and v, respectively
fluctuations of u and v, respectively
peak velocity deficit

time-averaged velocity deficit
longitudinal distance

transverse distance

exponent

half-width of wake

eddy viscosity

constant

function of velocity deficit

y/s

spacing

function of Reynolds shear stress
coefficient of kinematic viscosity of fluid

pressure plus normal Reynolds stress
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several authors due to varied analytical treatments of the general
wake flow phenomenon. In the far-wake flow region, both laminar
and turbulent flow cases are succinctly discussed by Schlicht-
ing [1]. In zero-pressure gradient laminar flow, under the first-
order Oseen-type approximation of the nonlinear Navier-Stokes
equations, called the Prandtl equations, it was shown by order of
magnitude analysis that the half-width & of the wake boundary
layer varies as x'/? and the velocity deficit &i; varies as x~'/2. Here, x
is the streamwise distance (along the free-stream) from the center
of cylinder, iy = U — u, U is the free-stream velocity and u
is the time-averaged velocity in x-direction in the wake domain.
In these theories, the laws of variations of § and u; with x hold
for both laminar and turbulent flow cases. The variation of 1
with the transverse distance y is approximately of the Gaussian
form. Abandoning the concept of the Oseen-type linearization, the
nonlinear laminar far-wake flow was analyzed by several authors
[2-8]. The study of the turbulent flow case by George [9] was
however based on basic similarity considerations. In addition,
studies on laminar flow structures around circular cylinders were
conducted by Alfonsi et al. [10,11].

In this study, the solutions for the far-wake flows downstream
of cylinders are obtained by using the generalized Clarkson-
Kruskal similarity method [12], as in the case of a circular far-wake
flow downstream of a sphere [ 13]. Both laminar and turbulent flow
cases are treated. The governing nonlinear momentum equation in
turbulent flow case is derived from the Reynolds averaged Navier—
Stokes (RANS) equations. In the first-order Oseen-type approxi-
mation, the self-similarity of the equation requires the pressure
gradient to be zero and the half-width § of wake to satisfy a non-
linear differential equation. The equation of § is solved in a general
series form. This solution is then adopted for two-dimensional
wake flow problem and the solution for the velocity deficit u;
is obtained. The variation of velocity deficit i1y in y-direction has
a Gaussian form. As in Schlichting [1], the flow past an array of
cylinders is then analyzed by using the present method. Finally, the
laminar wake flow problem is also solved. In the last two cases, the
first-order solutions agree with those stated in Schlichting [1].
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Fig. 1. Schematic of two-dimensional wake flow downstream of a circular cylinder.

2. Momentum equation of wake flow

Two-dimensional wake flow past a circular cylinder is shown
schematically in Fig. 1. The free-stream flow velocity is assumed to
be U emerging from x — —oo. In turbulent wake flow region, at
any point P (x, y), is governed by the continuity equation and the
RANS equation in x-direction:

uy+7v,=0 (1)
Ut +7 -0y = —p, — (W), + vty — (u), (2)
where (1, v) and (i, v’) are the time-averaged and fluctuations of
instantaneous velocity components (u, v) at the point (x, y), respec-
tively, p is the time-averaged hydrostatic pressure normalized by
mass density of fluid and v is the coefficient of kinematic viscosity
of fluid. The subscripts refer to partial derivatives. In the wake flow

region, the u is less than U and the u; is small as compared to U.
Using Eq. (1), Eq. (2) yields the nonlinear momentum equation as

— U@y + Py + (V') + v(h)y, + (W),
y
= —u(Uyy + (ﬂl)y/ (1), dy (3)
0

To a first-order of 14, the above equation yields the Oseen-type
approximate one-dimensional momentum equation:

— U@y + Py + (W), + (W), = —v (@), (4)

Let y = =448(x) be the equation of the wake boundary layer
(Fig. 1). Experiments by Schlichting [14] and Reichardt [15] re-
vealed that the flow is self-similar beyond some streamwise dis-
tance from the cylinder. For the solution of Eq. (4), a generalized
Clarkson-Kruskal self-similar solution is sought in terms of the
nondimensional variable n = y/§(x) in the following forms [12]:

Uy = o (%) ¢ (), —w'V' = [ug WPy (), (p+ W),

= [uo W Po () (5)
where 1, is the peak velocity deficit and ¢, ¥ and o are the
functions of velocity deficit, Reynolds shear stress and pressure
plus normal Reynolds stress, respectively.

Substitution of Eq. (5) into Eq. (4) and multiplication by S/u(z),
results in following:

U 1) duo n ds
u2 o dx up dx

¢/) — Y 4o = ——g" (6)
U08

where prime and double prime denote first and second derivative
of the functions, respectively. The coefficient v/(uo§) containing
kinematic viscosity on the right hand side of Eq. (6) is negligible
due to turbulent flow case. Further, for a self-similar solution to
exist, o must vanish, as § # constant. It implies that (p + u'v)
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