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a b s t r a c t

The present work deals with the inner most, log law velocity and inner most power law velocity, and
the associated Reynolds shear stresses, for turbulent energy production in the buffer layer of a fully
developed turbulent channel or pipe and Couette flow. The Reynoldsmomentum equations have been are
analyzed with out any closure model of eddy viscosity, mixing length etc. The equivalence of power law
solutionswith log law solution is demonstrated for large Reynolds numbers. Turbulent energy production
asymptotic theory is presented. In a fully developed turbulent channel/pipe flow the theory shows that
the peak of production and its location are universal numbers for large friction Reynolds numbers, but
for lower Reynolds number theory show dependence on inverse of friction Reynolds number R−1

τ . For
turbulent Couette flow peak of production and its location are universal numbers for all friction Reynolds
numbers. The turbulent energy production theory predictions in the buffer layer are compared with
experimental and DNS data which support the predictions, that in channel or pipe the prediction depend
on friction Reynolds number dependence like R−1

τ and for Couette flow the predictions are universal
numbers.

© 2017 Elsevier Masson SAS. All rights reserved.

1. Introduction

The velocity and Reynolds shear stress distributions in fully
developed turbulent flow in a pipe or channel and Couette flow
have been of great interest. The equations of turbulent motion are
not closed unless a turbulence closure model is adopted. The ap-
proaches adopted by Izakson [1], Millikan [2] and Kolmogorov [3]
are model free and appeal to an overlap hypothesis. Izakson–
Millikan–Kolmogorov (IMK) Hypothesis [4,5] is stated as: Between
the viscous and the energetic scales in any turbulent flow exists an
overlap domain over which the solutions characterizing the flow
in the two corresponding limits must match as Reynolds number
tends to infinity. The resemblance of IMKHypothesis with conven-
tional matching associated with closed equation seem peculiar to
turbulence theory.

The overall description of turbulent shear flow has been in
terms of two separate length scales (inner wall and outer wake)
at large Reynolds numbers. The log law velocity distributions were
considered [4–7]. Afzal [6] for turbulent Couette flow, analyzed the

* Corresponding author.
E-mail address: noor.afzal@yahoo.com (N. Afzal).

turbulent kinetic energy of fluctuations based on Reynolds open
equations at large Reynolds number and in the overlap region
proposed expressions on page 169 for turbulent energy dissipation
Eq. (42), turbulent kinetic energy of velocity fluctuations Eq. (43)
and turbulent energy diffusion Eq. (44). The predictions of Afzal [6],
based on Reynolds equationswith out any closuremodel (like eddy
viscosity, mixing length etc.) can be used for turbulent channel
and pipe flows where functional form of predictions remains same
but constant may changed they may be estimated from data of
pipe/channel flow. The power law velocity distributions were pro-
posed [8–11] in the same overlap region of Izakson and Millikan.
For asymptotic large Reynolds number Rτ → ∞ the log laws and
power laws velocity profiles are equivalent solutions.

Ramis, Fransson and Alfredsson [12] observed that the overlap
region of Izakson and Milikan is still far from being established in
DNS, so that the debate, logarithmic versus power law as well as
the irrespective coefficients or constants, is for the time being de-
pendent on quality experiments in canonical wall-bounded flows.
In fact observed differences between the different flows within
the buffer region are unlikely to be Reynolds number effects while
comparing the channel flow DNS data. The DNS data bases used
in the present paper, albeit of low Reynolds number, indicate no
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conclusive Reynolds number trends. For Reτ > 500, the peak
position resides with in y+ = 14 and y+ = 15 wall units. It has
been emphasized that the necessity of an accurate determination
of the wall position in near wall measurements of buffer layer
in wall bounded turbulent flows. When not accounted for wall
position properly, the data can lead to wrong conclusions about
the wall position and there by also on the near-wall behavior of
mean and turbulence quantities. While the apparent differences
are small and negligible in regards of their effect on the extracted
friction velocity, it will be shown later on that the determined
wall position is dependent on the chosen relation and the log law
constants. This becomes especially importantwhen theme assured
velocity profiles do not reach into the viscous sublayer or even
buffer region as is the case for most of the high Reynolds number
experiments.

The wall bounded turbulent shear flow, has been divided into
the viscous sublayer region 0 ≤ y+ < 5, buffer zone region 5 ≤

y+ < 30 and turbulent core y+ > 30, and these numerical con-
stantsmay slight change fromdata to data. The buffer layer acts as a
cushion between the sublayer and themain flowwhere turbulence
is fully developed flow. In buffer zone, another log law velocity
profile was proposed by Karman [13] and Afzal [14,15] where
constants κi and Bi in buffer layer are different form traditional
Izakson–Millikan overlap region constants κ and B. The interme-
diate layer (mesolayer of Afzal [14,15]) associated with the peak of
Reynolds shear stress domain y ∼ O(νδ/uτ )1/2 proposed existence
of two overlap regions. In first overlap region the mesolayer is
matched with outer layer leading to traditional log region [1,2] in
the domain O(νδ/uτ )1/2 < y < O(δ) and in second overlap region
the mesolayer is matched with inner layer, leading to another log
region [14,15] in the domain O(ν/uτ ) < y < O(νδ/uτ )1/2.

The aim of this note is study another overlap region (in the
buffer layer) as a part of the generalized log law velocity and power
law velocity for predicting the peak of turbulent energy production
in fully developed turbulent channel or pipe and Couette flows. It
is proposed that in the buffer layer the power law velocity is u+ =

Ci y
αi
+ with power index αi and prefactor Ci. It is shown that power

index αi → 0 and prefactor Ci → ∞ such that product αi Ci is
order unity, and for large Reynolds numbers the envelope of power
law velocity approaches to log law velocity The turbulent energy
production in turbulent channel/pipe and Couette flow have been
considered both for log law and power law in the buffer layer
domain.

2. Turbulent flow in a channel or pipe:

The Reynolds mean momentum equation, in fully developed
turbulent flow in a channel or pipe is
du+

dy+

+ τ+ = 1 − R−1
τ y+ (1)

The boundary conditions on the wall and axis of channel or pipe
y = δ are

y+ = 0, u+ = τ+ = 0, y = δ, u = Uc,

du+

dy+

= τ+ = 0 (2)

Here u+ = u/uτ and τ+ = τ/ρu2
τ are non-dimensional velocity

and Reynolds shear stress. uτ is the friction velocity and Uc is the
center line velocity in channel/pipe flow at y = δ. The friction
Reynolds number is Rτ = uτ δ/ν and traditional Reynolds number
Re = 2δUb/ν is based on Ub the bulk average velocity in a channel
or pipe. In the sublayer (immediate neighborhood of the wall)
the velocity u+, Reynolds shear stress τ+ and turbulent energy
production P+ = τ+∂u+/∂y+ for large Reynolds numbers are

u+ = y+ −
b
4
y4
+
, τ+ = b y3

+
, P+ = by3

+
(3a, b, c)

Guo [7] proposed b = 1/1150 = 8.696 × 10−4 as constant.
Ramis, Fransson and Alfredsson [12] proposed that b depends on
Reynolds number and in their Table 1 (page 36) computed 1.7 ≤

b×104
≤ 7.89 in the Reynolds number range 64 ≤ Rτ ≤ 2000. The

second order correction b to the linear law of the wall, asymptotes
to zero with increasing Reynolds number, and becomes practically
negligible already for Reτ > 300.

The turbulent energy production P+ = τ+du+/dy+ from
Reynolds meanmomentum equation (1) for a channel or pipe may
be expressed as

P+ = τ+

du+

dy+

= (1 − R−1
τ y+)

∂u+

∂y+

−

(
∂u+

∂y+

)2

(4)

In traditional picture the turbulent flow consists of inner wall
layer velocity profile u/uτ = u+(y+) in wall variable y+ =

yuτ/ν and outer layer velocity profile is (u − Uc)/uτ = Uo(Y )
in outer variable Y = y/δ for large friction Reynolds number,
Rτ = uτ δ/ν → ∞. In the overlap region, Izakson [1] proposed
a functional equation of velocity, while Millikan [2] considered
its differential form and Kolmogorov [3] considered velocity fluc-
tuations. The matching of velocity in inner and outer layers by
Izakson–Millikan–Kolmogorov (IMK) Hypothesis [4,5] leads to a
functional equation

u+(y+) = Uc+(Rτ ) + Uo(Y ), Uc+(Rτ ) =
Uc

uτ

(5)

The first differential of the functional equation (5) becomes

y+

du+

dy+

= Y
dUo

dY
= Rτ

dUc+

dRτ

= J (6)

In order to further explore, the functional equations. (5) and (6),
it is differentiated once more with respect to y, to get

y2
+

∂2u+

∂y2+
= Y 2 ∂2Uo

∂Y 2 = R2
τ

d2Uc+

dR2
τ

= K (7)

The turbulent energy production P+ Eq. (4), in the light of
relation (6) becomes

P+ = (1 − R−1
τ y+)

J
y+

−

(
J
y+

)2

(8)

The solutions of the functional equations. (5)–(7) mainly de-
pend on the choice of functions J and K . That Izakson [1] and
Millikan [2] for fully developed turbulent pipe or channel flow
adopted J = 1/κ (where κ is the Karman universal constant),
leading to log laws for velocity in traditional overlap region. In
the present work we consider flow in the buffer layer, a cushion
between sublayer and fully developed turbulent flow domain [1,2]
and outer layer flow.

2.1. Inner most log law for velocity profile; Karman log law of buffer
layer

The functional Eq. (6) with J = Ai = 1/κi yields velocity profile
as another log law

u+ = Ai ln y+ + Bi (9)

which was first proposed by Karman [13] and Afzal [14,15] in the
buffer layer with Ai = 1/κi = 5.03 and Bi = −3.05. In this case
Reynolds stress from Reynolds momentum equation (1) becomes

τ+ = 1 −
Ai

y+

− Y (10)

The turbulent energy production (8) from (9) and (10) becomes

P+ = (1 − R−1
τ y+)

Ai

y+

−

(
Ai

y+

)2

(11)
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