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a b s t r a c t

In a natural estuary, a tidal bore may progress on a small sloping bed from the downstream to the
upstream. In this study, a simple analytical solution for tidal bore formed in a small slope channel was
developed using the finite control volume analysis. New unsteady experiments were conducted to verify
the theoretical model. The model predictions generally agree with the observations. A general relation is
obtained for the conjugate depth ratio as a function of the Froude number and the channel slope from the
experimental data. The results indicate that the conjugate depth ratio increases with an increasing
Froude number as well as with a decrease in channel slope. On a negative slope, the Froude number
increases as the bore propagates along the channel, and decreases for a positive slope. The theoretically
based model is accurate and simple to estimate the celerity of the tidal bore progressing along a small
slope channel.

� 2017 Elsevier Inc. All rights reserved.

1. Introduction

A tidal bore is a special geophysical phenomenon in which the
leading edge of the flood tide forms an undular or breaking bore
that travels up a river or narrow bay against the direction of the
initial flow current [1]. An undular bore is a positive surge charac-
terised by a train of secondary waves following the surge front [2].
A breaking bore is a wall of turbulent water rushing upstream
along the river with its foaming front and rumble noise [3]. A tidal
bore is a moving hydraulic jump. This problem was studied by sci-
entific researchers and hydraulic engineers for a couple of cen-
turies. Using the shallow-water equations, Barré de Saint-Venant
[4] first predicted the theoretical development of a tidal bore.
Other theoretical analysis and literature reviews comprise [5–7].
Although most studies considered horizontal channels, the bed of
natural estuaries with tidal bore generally presents some slope.
In the Qiantang River, China, the bore results from the funnel-
shaped character of the Hangzhou Bay and a sand bar that occupies
the mouth [8–10]. The rising sand bar with an average riverbed
slope of 0.0002 decreases the water depth, and the funnel-
shaped bay concentrates the water energy as well, resulting in
the strong Qiantang River tidal bore.

While hydraulic jumps on sloping channels have been studied
[11–13], there is limited research about the tidal bore progressing

on a slope [14]. Combining a theoretical derivation and new phys-
ical data, the tidal bore progressing on a small slope with different
slope angle h (�0.004 < h < 0.004) is investigated here.

2. Theoretical models for a small slope channel

Let us consider a tidal bore progressing upstream on a prismatic
channel with small slope h depicted in Fig. 1. Take a fixed and
deforming control volume with length L and width B, between an
upstream section 1 and the end of the channel section 2. In
Fig. 1, d, V and P are the flow depth, velocity and water pressure,
respectively; f is the boundary shear force; G is the gravity force;
C, t and L are respectively the celerity, progressing time and dis-
tance of the tidal bore; dj is the conjugate water depth, that is
the flow depth immediately behind the bore front; the subscripts
1 and 2 refer to the flow conditions at sections 1 and 2 (Fig. 1a).

For a small slope h (�0.004 < h < 0.004), the control volume �V is
(Fig. 1a)

�V ¼ BðX1 þX2Þ ð1Þ
where X1 ¼ d1ðL� CtÞ � 0:5mðL� CtÞ2, X2 ¼ d2Ct þ 0:5mC2t2,
m ¼ tan hþ tanu. u is the friction slope [2]

tanu ¼ 4s0
qgD

ð2Þ
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where s0 is the boundary shear stress, s0 ¼ kqV2=8, k is the Darcy-
Weisbach friction factor, and D is the hydraulic diameter.

2.1. Conservation of mass

For the control volume (CV), the equation of conservation of
mass may be expressed as

d
dt

Z
CV
qd�V ¼ �

Z
Ain
qðV

!
� n!ÞdA�

Z
Aout

qðV
!
� n!ÞdA ð3Þ

where q is the density of water; V
!

is the velocity vector; n
!

is the

normal vector; and qðV
!
� n!ÞdA is the mass flow rate through the dif-

ferential area dA. The sign of the dot product V
!
� n! is ‘‘+” for flow out

of the control volume and ‘‘�” for flow into the control volume.
Assuming q to be a constant and considering the velocity distri-

bution at the sections 1 and 2 are uniform, thenR
Ain qðV

!
� n!ÞdA ¼ �BqV1d1, and

R
Aout qðV

!
� n!ÞdA ¼ �BqV2d2.

From Eq. (1), it yields

d
dt

Z
CV
qd�V ¼ qBCðd2 � d1 þ LmÞ ð4Þ

Substituting Eq. (4) to Eq. (3), it gives

d2ðV2 þ CÞ ¼ d1ðV1 þ CÞ � CLm ð5Þ

2.2. The linear momentum equation

From Newton’s second law, the linear momentum equation
may be written in an integral form as

d
dt

Z
CV
qV

!
d�V ¼

X
F
!
ex �

Z
Ain
qðV

!
� n!ÞV

!
dA�

Z
Aout

qðV
!
� n!ÞV

!
dA ð6Þ

where
P

F
!
ex is the total external forces acting on the control

volume;
R
Ain qðV

!
� n!ÞV

!
dA ¼ �qBV1V1d1, andR

Aout qðV
!
� n!ÞV

!
dA ¼ �qBV2V2d2.

From Eq. (1), it yields

d
dt

Z
CV
qV

!
d�V ¼ qB

d
dt

Z
X1

V
!
dAþ qB

d
dt

Z
X2

V
!
dA ð7Þ

The conservation of mass implies that the discharge any section
in X1 and X2 is equal, i.e., q1(s) = V1d1, q2(s) = V2d2, where q1(s) and
q2(s) are the discharge per meter width at section 1 and 2, respec-
tively. Based upon geometric considerations (Fig. 1):Z
X1

V
!
dA ¼

Z L�Ct

0
VðsÞH1ðsÞds ¼

Z L�Ct

0
q1ðsÞds ¼ V1d1ðL� CtÞ ð8Þ

Z
X2

V
!
dA ¼

Z L

L�Ct
VðsÞH2ðsÞds ¼

Z L

L�Ct
q2ðsÞds ¼ V2d2ðL� CtÞ ð9Þ

Substituting Eqs. (8) and (9) into Eq. (7), it yields

d
dt

Z
CV
qV

!
d�V ¼ qBCðV2d2 � V1d1Þ ð10Þ

The total external force acting on the control volume shown in
Fig. 1 along the surface of the slope isX

F
!

ex ¼ P1 þ P2 þ f þ G sin h ð11Þ

Fig. 1. Sketch of tidal bore progressing upstream along a prismatic channel. (a) Physical variables and geometrical description. (b) Downward propagation. (c) Upward
propagation.
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