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ARTICLE INFO ABSTRACT

Keywords: The present paper deals with the artificial neural network modeling (ANN) of heat transfer coefficient and
Microchannel Nusselt number in TiO,/water nanofluid flow in a microchannel heat sink. The microchannel comprises of 40
Nanofluids

channels; each channel has a length of 4 cm, a width of 500 um, and a height of 800 pm. In the ANN modeling of
heat transfer coefficient and Nusselt number 23 and 72 datasets have been used, respectively. The experimental
Nusselt number has been calculated based on three different thermal conductivity models, four volume fractions
of 0, 0.5, 1, and 2%, two values of Reynolds number i.e. 400 and 1200 and three different heating rates including
50.6, 60.7, and 69.1 W. Therefore, the inputs that are introduced to the neural network are volume fraction of
nanoparticles, Reynolds number, heating rate, and model number while the output of network is the Nusselt
number. It is elucidated that an appropriately trained network can act as a good alternative for costly and time-
consuming experiments on the nanofluid flow in microchannels. The average relative errors in the prediction of
Nusselt number and heat transfer coefficients were 0.3% and 0.2%, respectively.
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1. Introduction

Over the last decade, numerous studies both experimentally and
numerically have been performed to appraise the nanofluids properties
and their role in efficiency enhancement of energy systems (For ex-
ample, refer to Refs. [1-10]). One of the challenges for assessing the
nanofluid effect on the performance of thermal systems is difficulties in
nanofluid preparation and relatively high expenses of production. One
solution to save the time and reducing the expenses of experiments may
be the implementation of soft computing methods such as Artificial
Neural Network (ANN) to predict the efficiency of nanofluid-based
thermal systems. Here, a brief review of some previous studies on
modeling of nanofluid properties and applications using ANN is pre-
sented.

In 2009, Santra et al. [11] modeled natural convection of a non-
Newtonian nanofluid (Cu/water) in a cavity using both CFD and ANN.
A resilient-propagation (RPROP) algorithm was used for training the
neural network. It was concluded that ANN could be more helpful than
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CFD from the time-saving viewpoint. Hojjat et al. [12] measured
thermal conductivity of three different non-Newtonian nanofluids
containing y-Aly03, TiO, and CuO nanoparticles and used ANN for
modeling the experimental data. The inputs of ANN were temperature,
nanoparticle volume fraction, and thermal conductivity of nano-
particles.

Balcilar et al. [13] used three different ANN approaches including
multi-layer perceptron (MLP), generalized regression neural network
(GRNN) and radial basis function (RBF) to model the pool boiling of
TiOy/water nanofluids. They found that ANN methods are able to
predict the heat transfer coefficient with errors less than + 5%. Yousefi
et al. [14] estimated the relative viscosity of different nanosuspensions
composed of various nanoparticles (i.e. CuO, SiO,, Al,O3, TiO,) and
base liquids (i.e. water, ethanol, a mixture of propylene glycol and
water, and a mixture of ethylene glycol and water) by designing a
diffusional neural network. The modeling results were fitted with ex-
perimental data well. Esfe et al. [15] studied experimentally the
thermal conductivity of ethylene glycol based nanofluids containing
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Fig. 1. Schematic of the experimental set-up [From Nitiapiruk et al. [30], with permission from Elsevier].

MgO particles with four different sizes including 20, 40, 50, and 60 nm
where temperature changes between 25 and 55 °C, and concentration
varies between 0 and 5%. Next, a neural network was trained to model
the measured data of thermal conductivity by introducing volume
fraction, nanoparticle dimension, and temperature as inputs of the
network.

Bahiraei and Mashaei [16] first presented a three dimensional CFD
model for Al,Oz/water nanofluid flow in a canal with discrete heat
sources and then using the simulation data they extended an artificial
neural network to predict the heat transfer coefficient and pressure
drop in the channel.

Esfe et al. [17] measured thermal conductivity of COOH-functio-
nalized MWCNTs/water nanosuspensions and then implemented MLP
technique to model the data. Temperature (between 25 and 55 °C) and
nanofluid concentration (up to 1%) were the inputs of trained network.
The results of modeling were in good agreement with experimental
data.

Afrand et al. [18] used 48 experimental data obtained for viscosity
of MWCNTs-SiO»/AE40 nanolubricants to develop a correlation. Next,
they designed an optimal ANN based on the derived correlation. The
comparisons between outputs of the correlation and the optimized ANN
revealed that the deviation margin of ANN results from experimental
data is just 1.5% while the deviation margin reaches 4% in the case of
correlation. Abdollahi and Shams [19] studied the nanofluid flow in a
channel equipped to vortex generator numerically. They utilized neural
network along with multi-objective genetic algorithm and CFD mod-
eling to obtain the optimal nanofluid concentration, and position and
shape of vortex generator in the channel. Ziaei-Rad et al. [20] solved
numerically the nanofluid flow over a horizontal permeable stretching
sheet under magnetohydrodynamic(MHD) flow by converting gov-
erning equations from partial differential to ordinary differential form.
Effects of different parameters including suction/injection, nanofluid
concentration, viscous dissipation and MHD parameter on the values of
skin friction factor and Nusselt number have been evaluated. Next,
using a multilayer neural network approach a model with excellent
accuracy was presented to predict the Nusselt number and friction
factor where the average difference between results of numerical so-
lution and neural network model was less than 0.4%. Kalani et al. [21]
used adaptive neuro fuzzy inference system (ANFIS) model and two
different neural networks including RBF and MLP to predict the outlet
temperature and electrical efficiency of a photovoltaic thermal (PVT)
system using Zinc Oxide/water nanofluid. Particle Swarm Optimization
(PSO) procedure was implemented to optimize the structure of the
three models. It was found that ANFIS and RBF can estimate the desired
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outputs with a higher accuracy. To save the space, other related papers
on modeling of nanofluid flow using the neural network are not re-
viewed here; as other instances, interested readers can refer to Refs.
[22-28].

The above literature review reveals that most of the studies on
neural network modeling of nanofluids have been conducted on ther-
mophysical properties and not enough attention has been paid to use
ANN for modeling of nanofluid flow in industrial thermal systems such
as microchannel heat sinks. There is a conference paper released in
2008 that reports the application of ANN for modeling of Cu/water
nanofluid flow in a microchannel heat sink. However, the modeling was
done based on the results of an analytical analysis and not experimental
data [29].

Based on the best knowledge of the authors, there is no study on
neural network modeling of nanofluid flow in microchannel heat sinks
using measured data, despite the high importance of microchannels in
cooling of electronic devices. The present paper aims to extend a neural
network to predict the Nusselt number and heat transfer coefficients
due to nanofluid flow in a microchannel heat sink. The experimental
data used in the present modeling have been extracted from our pre-
vious experimental work on the flow of TiO,/water nanofluid in a
microchannel heat sink composed of 40 channels [30]. It should be
mentioned that the experiments on the microchannel heat sink were
performed under real conditions in which domestic computers operate.

2. Experiments

A complete description of experimental set- up and procedure has
been given in Ref. [30], but here a summary of the experimental study
is represented. Fig. 1 depicts a schematic of the experimental set-up.
The test section comprises of a microchannel heat sink with 40 channels
and a heater in the bottom. Each channel has a length of 4 cm, a width
of 500 um, and a height of 800 pum. The heat was applied to the mi-
crochannel heat sink at three different rates including 50.6, 60.7, and
69.1 W. Water-based nanofluids containing TiO, nanoparticles at con-
centrations of 0.5, 1, and 2% have been prepared, and the results were
compared with water. Experiments were performed under laminar re-
gime of nanofluid flow. Nusselt number and heat transfer coefficients
were estimated based on measured temperatures and heating rate.
Nusselt number is related to heat transfer coefficients through thermal
conductivity. For estimation of Nusselt number, three different thermal
conductivity models have been used as follows:

Model 1:

Maxwell equation is used to calculate thermal
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