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A B S T R A C T

This article applied the multiple relaxation time multicomponent/multiphase pseudopotential lattice Boltzmann
model to simulate two immiscible fluids flow in 2D porous media, and analyzed the effects of capillary number
(Ca), viscosity ratio (M) and wettability on the relative permeability curves. Simulation results indicate that the
nonwetting phase (NWP) relative permeability increases with increasing Ca; while the effect of Ca on the wetting
phase (WP) relative permeability depends on the wettability. When M > 1, the NWP relative permeability
increase with increasing M in a strong wetting condition because of the lubricating effect. The amplitude of the
NWP relative permeability may even exceed the single phase permeability. However, the exact value of the
amplitude and where it occurs depends on M and the structure of the porous media. The WP relative
permeability is insensitive to M. When the porous media converts from strong wetting condition to neutral
wetting condition, the NWP relative permeability decreases while the WP relative permeability increases.

1. Introduction

Two immiscible fluids flowing through porous media is a common
environmental phenomenon and is of significant importance for many
industrial problems, such as enhanced oil recovery, geological carbon
dioxide sequestration, and fuel cells [1–3]. The relative permeability is
the key descriptor of the flows of the two phase fluids. During the early
years, the flows of the two phase fluids were believed to be uncoupled,
and a simple extension of the single phase Darcy's law was made to
obtain the relative permeability curves. However, researchers were
soon afterwards aware that viscous coupling effect, which was a result
of the monument transfer between the two fluids, played a vital role
during the two immiscible fluids flow [4–6]. And it is now widely
accepted that the relative permeability curves, rather than a simple
result of saturation, are functions of many parameters including
capillary number, viscosity ratio, and wettability.

Historically, laboratory experimental methods were first and widely
used to determine the relative permeability curves of the two phase
flow. For example, Dullien and Dong measured the relative perme-
ability curves of sand packs by two sets of co-current steady state
experiments [7]. External force was applied to one phase each time, and
the relative permeability curves were calculated based on the recorded

oil and water velocity. Bentsen and Manai estimated the permeability
coefficients by a combination of co-current and countercurrent flow
experiments [8]. Until now, experimental methods are still general
choices for the study of two phase flow [9,10]. However, the relative
permeability experiment is a time consuming process; the experiment
sometimes fails to reflect the real subsurface conditions; and the
heterogeneity between experimental porous media may affect the
analysis of the flow controlling factors. In recent years, benefited by
the evolution of the computational capacities, some numerical simula-
tion methods emerged, among which the pore network modeling has
great potential applications [11]. Zhao et al. used pore network
modeling to study the oil recovery by water flooding in sandstones
and carbonates, and discussed the effect of initial water saturation,
contact angle distribution and oil wet fraction [12]. Gharbi and Blunt
used the pore network modeling method to study the relative perme-
ability curves of carbonate samples, and discussed the impact of
wettability and connectivity on the relative permeability curves [13].
However, the pore network method is based on displacement and
transport equations, which fail to unveil the underlying microscopic
dynamics. Besides, the accuracy of the modeling is highly related to the
extracted network.

The lattice Boltzmann (LB) method emerged in the late 1980s, and
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has become an effective numerical tool to simulate and investigate a
broad class of flows, including the two phase flow [14–16]. By now,
there are four types of LB multiphase models, which are the color model
proposed by Rothman and Keller (also called R-K model) [17,18], the
pesudopotential model proposed by Shan and Chen (Shan-Chen model)
[19,20], the free energy model introduced by Swift et al. [21], and the
kinetic theory based model proposed by He et al. (He-Shan-Doolen
model) [22]. There have been some studies investigating the multi-
phase flow using different multiphase models based on different pore
structures. Langaas and Papatzacos simulated concurrent and counter-
current flows in a uniform pore space geometry using the free energy
model and studied the effects of capillary pressure, viscosity ratio under
different wettability [23]. Kang et al. simulated displacement of a two-
dimensional (2D) immiscible droplet in a channel using the pseudopo-
tential model, and discussed fingering controlling factors [24,25]. Li
et al. used a multiple relaxation time (MRT) pseudopotential model to
simulate two phase flow in a 3D porous medium and discussed the
impacts of capillary number, viscosity ratio, wettability and fluid-fluid
interfacial area on the relative permeability curves [26]. Huang and Lu
simulated co-current and counter-current flow in a simplified 2D porous
medium using one component/two phase pseudopotential model [27].
Dou and Zhou discussed the relative permeability affecting factors in
both homogenous and heterogeneous 2D porous media [28]. All these
studied have deepened the understanding of viscous coupling in two
phase immiscible flows.

In this study, lattice Boltzmann simulation of two immiscible fluids
flowing through 2D porous medium has been conducted. The applied
lattice Boltzmann is the multicomponent multiphase (MCMP) pseudo-
potential model with a MRT collision operator. The 2D porous medium
structure was extracted from a computer tomography image of a tight
sandstone sample. After validating the model by three benchmarks (i.e.,
Laplace law, contact angle, and flow in 2D channel), the two immiscible
fluids flowing through the porous media were simulated. And the
effects of the capillary number (Ca), viscosity ratio (M), and wettability
(θ) on the relative permeability curves were discussed.

2. Methodology

The MCMP pseudopotential model was used for the simulations in
this study. And a MRT collision operator was added to increase the
stability of the simulations [29]. The standard LB equation using the
MRT collision operator with a force term is expressed as
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Where fσ(x, t) is the density distribution function of the component σ
at position x and time t. c=δx/δtis the lattice speed with δx and δt being
the lattice spacing and time step respectively. e are the discrete
velocities, and fσ(eq)(x, t) is the equilibrium density distribution func-
tion. The discrete velocities for a D2Q9 model are given by
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And the equilibrium distribution function fiσ(eq)(x, t) is written as
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In which, ωi is the weight factor with ω0=4/9, ω1−4=1/9 and
ω5−8=1/36.

In the MCMP model, the equilibrium velocity is calculated as
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Where ρσ and uσ are the density and velocity of component σ, and
are calculated as
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M is a transformation matrix, and for the detailed value of M one is
referred to [30]. S is a diagonal relaxation matrix, and is expressed as
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Where sρσ corresponds to conserved mass, and sjσ corresponds to
conserved moments. They are both taken 1. seσ, sεσ and sqσ correspond to
non-conserved moments and can be adjusted independently to improve
the accuracy and stability of the MRT model. In this study, following
[31], the three parameters are taken as: seσ=0.6, sεσ=1.54, and
sqσ=1.2. sυσ is the dimensionless relaxation time, and is related to
viscosity υσ as
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Where cs2 is the lattice sound speed ( )c =s
c2
3

2
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The force term Fi
σ in Eq. (1) follows Guo's force scheme, and is

defined as [30,32]
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Where Fσis the total force acting on component σ, and is composed
of three parts
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Where Ffσ is the fluid-fluid interaction force, Fadsσ is the fluid-solid
interaction force, and Fbσ are other possible external forces such as
gravitational force. For the MCMP model, the fluid-fluid interaction
force between components σ and σ is defined as
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Where g σσ represents the interaction strength between different
components. In this study, we set gσσ and gσσ as zero, and take
g g= = 0.65σσσ σ to separate the two phase and maintain a moderate

Nomenclature

fσ density distribution function
fσ(eq) equilibrium density distribution function
e discrete velocities
ueq equilibrium velocity
ρσ density
M transformation matrix
S diagonal relaxation matrix
υσ viscosity
Fσ total force

Ffσ fluid-fluid interaction force
Fadsσ fluid-solid interaction force
Fbσ external body forces
g σσ fluid-fluid interaction strength
gσw fluid-solid interaction strength
Kr , nw nonwetting phase relative permeability
Kr ,w wetting phase relative permeability
Ca capillary number
M viscosity ratio
θ contact angle
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