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a b s t r a c t 

Several modifications are introduced to the Elliptic Blending Differential Flux Model proposed by Shin 

et al. (2008) to account for the influence of wall blockage on the turbulent heat flux. These modifications 

are introduced in order to reproduce, in association with the most recent version of the EB-RSM, the full 

range of regimes, from forced to natural convection, without any case-specific modification. The interest 

of the new model is demonstrated using analytical arguments, a priori tests and computations in channel 

flows in the different convection regimes, as well as in a differentially heated cavity. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Many industrial applications involving heat or mass transfer 

phenomena, in particular in the field of energy production, are still 

treated with linear eddy-viscosity models and the Simple Gradient 

Diffusion Hypothesis (SGDH) to model the turbulent heat fluxes. 

Within this class of models, one of the most successful approaches 

in forced convection flows (e.g., Parneix et al., 1998; Manceau 

et al., 20 0 0; Sveningsson and Davidson, 20 05; Billard and Lau- 

rence, 2012 ) is the elliptic relaxation concept, under the form of 

its eddy-viscosity version, the V2F model, originally developed by 

Durbin (1991) , or one of its stabilized formulations ( Hanjali ́c et al., 

20 04; Laurence et al., 20 05 ), combined to a SGDH approach with 

a constant turbulent Prandtl number. For buoyant flows, a step 

further in the sophistication of the elliptic relaxation models was 

made by Kenjereš et al. (2005) , who introduced an algebraic flux 

model (AFM) with a buoyancy-extended V2F model. However, it is 

generally admitted that the Reynolds-stress models are desirable 

( Hanjali ́c and Launder, 2011 ) for mixed and natural convection, 

due to the presence of significant anisotropic phenomena. 

In the last few years, the Elliptic Blending Reynolds-Stress 

Model (EB-RSM, Manceau and Hanjali ́c, 2002 ), has emerged as a 

numerically robust alternative to the elliptic relaxation concept, 

in particular for isothermal and forced convection applications 

(e.g., Thielen et al., 2005; Borello et al., 2005; Viti et al., 2007; 
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Billard et al., 2011 ). The Generalized Gradient Diffusion Hypothesis 

(GGDH, Daly and Harlow, 1970 ) proved sufficient to model the 

turbulent heat fluxes in the absence of buoyancy, due to the cor- 

rect reproduction of turbulence anisotropy in the near-wall region 

by the EB-RSM. For the mixed and natural convection regimes, 

transposing the model of Manceau and Hanjali ́c (2002) for the 

Reynolds stresses into a model for the turbulent heat fluxes, Shin 

et al. (2008) proposed a differential flux model (DFM) based on the 

elliptic blending strategy to account for the near-wall region. How- 

ever, as will be shown in Section 4 , this model is not fully satis- 

factory in the natural convection regime, which led ( Choi and Kim, 

2008 ) to modify the coefficients of the EB-RSM in order to improve 

the predictions, at the expenses of the predictions in forced con- 

vection. The present work aims at developing a modified EB-DFM 

that can be used in association with the most recent version of the 

EB-RSM ( Manceau, 2015 ) in the full range of regimes, from forced 

to natural convection, without any case-specific modification. 

2. The elliptic blending strategy 

The Reynolds-stress transport equation reads 

∂ρ u 
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where P ij , D 

ν
i j 
, D 

T 
i j 
, φ∗

i j 
and ε ij stand for the production, the 

molecular diffusion, the turbulent diffusion, the velocity-pressure 

gradient correlation and the dissipation tensors, respectively. 
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G i j = −g i βu ′ 
j 
θ ′ − g j βu ′ 

i 
θ ′ is the production term arising from buoy- 

ancy forces, assuming a linear variation of density with tempera- 

ture. Note that, throughout the present paper, the Boussinesq ap- 

proximation is used, i.e., the density variations are only accounted 

for in buoyant terms and the velocity field is divergence-free. 

In order to account for the effects of wall blockage on turbu- 

lence ( Manceau, 2015 ), in the EB-RSM, the difference φ∗
i j 

− ε i j is 

formulated as a blending 

φ∗
i j − ε i j = (1 − α3 )(φw 

i j − ε w 

i j ) + α3 (φh 
i j − ε h i j ) , (2) 

of a quasi-homogeneous model φh 
i j 

− ε h 
i j 

(i.e., a model not valid 

in the near-wall region and requiring the use of wall functions), 

herein the SSG model ( Speziale et al., 1991 ); and the near-wall 

model given by 
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The blending function α3 is related to the distance-to-the-wall- 

sensitive function α, solution of the elliptic relaxation equation: 

α − L 2 ∇ 

2 α = 1 , (5) 

which is zero at the wall (Dirichlet boundary condition) and goes 

to unity far from the wall. The unit vector n is a generalization of 

the notion of wall-normal vector: n = ∇ α/ ‖ ∇ α‖ . 
The dissipation equation reads 
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where τ is Durbin’s time scale 

τ = max 

( 
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ε 
, C T 
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ν
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) 

. (7) 

The variable C ′ ε1 coefficient 

C ′ ε 1 = C ε 1 

[ 
1 + A 1 

(
1 − α3 

)P 

ε 

] 
(8) 

is intended to represent the term P ε3 in the exact ε-equation 

( Hanjali ́c and Launder, 2011 ), which stimulates the production of 

dissipation in the buffer layer ( Mansour et al., 1988 ). Since the 

initial proposal of Manceau and Hanjali ́c (2002) , the model has 

undergone numerous modifications. The full set of equations and 

coefficients is given in Appendix A . For a justification of the version 

used in the present work, the reader is referred to Manceau (2015) . 

For mixed and natural convection, elaborate heat flux models 

are needed in order to account for buoyancy/turbulence inter- 

actions ( Hanjali ́c, 2002 ). Shin et al. (2008) and Choi and Kim 

(2008) proposed extensions of the elliptic blending strategy to 

full differential flux models (DFMs), in order to account for the 

influence of the wall on the turbulent heat flux. With the objec- 

tive of avoiding the resolution of additional transport equations, 

Dehoux et al. (2012) derived an implicit algebraic version of such 

models, called the elliptic-blending algebraic flux model (EB-AFM), 

which is merely a near-wall extension of the standard AFM ( Dol 

et al., 1997 ). Recently, Vanpouille et al. (2014) derived an explicit 

algebraic heat flux model using the elliptic blending strategy, 

and successfully computed buoyant flows in mixed and natural 

convection regimes. 

A DFM consists in closing the Reynolds-averaged temperature 

equation by solving the transport equation for the turbulent heat 

flux, 
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In this equation, the production terms P i θ and G i θ do not require 

modelling, contrary to the scrambling term φ∗
iθ

, the dissipation 

term ε i θ and the turbulent and molecular diffusion terms D 

t 
iθ

and 

D 

ν
iθ

. Shin et al. (2008) and Choi and Kim (2008) applied the elliptic 

blending strategy (see Eq. 2 ) to the scrambling and dissipation 

vectors, 
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where αθ = α is chosen as the same blending function as used in 

Eq. (2) , and n = 2 . Similar to the case of the Reynolds stresses, this 

approach makes possible the extension to the near-wall region of 

quasi-homogeneous models φh 
iθ

and ε h 
iθ

. Assuming the isotropy of 

the small scales, ε h 
iθ

= 0 is imposed; for the scrambling term φh 
iθ

, 

the standard quasi-homogeneous model 
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is used. Shin et al. (2008) and Choi and Kim (2008) used the 

coefficients proposed by Launder (1988) and Peeters and Henkes 

(1992) , respectively. 

In order to satisfy the asymptotic near-wall behaviour of the 

difference φw 

iθ
− ε w 

iθ
, Shin et al. (2008) showed that the two terms 

can be written as 
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Note that the asymptotic analysis leading to these equations is 

based on the common assumption that the fluctuations of the wall 

temperature are negligible due to the thermal inertia of the solid 

material. The additional complexity due to conjugate heat transfer 

when the conduction in the solid cannot be neglected ( Flageul 

et al., 2015; Tiselj et al., 2001 ), or simply due to an imposed 

heat flux at the wall, is not addressed herein and is left to future 

work. Here, the difference φw 

iθ
− ε w 

iθ
, and consequently, the results, 

are independent of the particular value of γ 1 , since only this 

difference is involved in Eq. (9) . Shin et al. (2008) used γ1 = 1 , 

whereas, in order to satisfy the individual asymptotic behaviour of 

φw 

iθ
and ε w 

iθ
, Choi and Kim (2008) used γ1 = 0 . 

Turbulent and molecular diffusion terms are modelled as 
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( Daly and Harlow, 1970 ) and 
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respectively. Choi and Kim (2008) and Shin et al. (2008) used 

γ2 = 1 ( Shikazono and Kasagi, 1996 ) and γ2 = 0 ( Peeters and 

Henkes, 1992 ), respectively. 

The transport equation for the temperature variance is simply 

modelled as 
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