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a b s t r a c t

This paper presents an improved lattice Boltzmann (LB) method to simulate solid-liquid phase change
with natural convection in porous media under local thermal non-equilibrium (LTNE) conditions. In this
method, three distribution functions are respectively adopted for flow field, and temperature field of the
PCM and solid matrix. Different from previous models, the present model for temperature field incorpo-
rates the total enthalpy and a free parameter in the equilibrium distribution function, and thus could
have high computational efficiency by avoiding iteration procedure to deal with phase change. The pre-
sent model is validated by the melting with natural convection in a square cavity filled with a metal foam.
It is found that the numerical results are in good agreement with other numerical results, and the present
method could preserve higher accuracy due to numerical diffusion reduction through keeping the relax-
ation time at around unity as well as tuning the free parameters properly.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Solid-liquid phase change in porous media is frequently
encountered in lots of natural and engineering systems [1]. Over
the past several decades, this problem has been extensively inves-
tigated analytically, experimentally and numerically [1]. In partic-
ular, many numerical methods have been adopted to simulate this
problem [1,2]. However, mathematical modeling of such problem
is still a challenging task because of the nonlinear characteristics
of phase change process, as well as the complexity of porous
structure.

As a powerful numerical tool based on the kinetic theory, the
lattice Boltzmann (LB) method has been applied to the fluid flow
and heat transfer [3–8]. In recent years, the LB method has been
already adopted to model solid-liquid phase change in porous
media not only under local thermal equilibrium (LTE) conditions
[9–11] but also under local thermal non-equilibrium (LTNE) condi-
tions [12,13]. Based on LTNE condition, Gao et al. developed a ther-
mal LB model with three distribution functions [12]. Tao et al.
applied LB method to study the melting processes in the metal
foam/paraffin composite PCMs [13]. However, these existing LB
models under LTNE conditions need multiple iterations to deal

with phase change, which may increase the computational cost,
due to the fact that non-linear latent-heat source term in the
energy equation is treated as the corresponding source in LB equa-
tion. In addition, the use of the models with single relaxation time
(SRT) collision approach, could encounter numerical diffusion
across phase interface when the relaxation time is not unity [14].
For reducing the numerical diffusion in simulating phase change
problem without porous media, the multi-relaxation-time (MRT)
approach is employed by Huang and Wu [14]. However, compared
with the MRT model, the SRT model has become the most widely
used form of the LB model because of its simplicity and computa-
tional efficiency. Therefore, it is important to develop an improved
SRT model which can reduce numerical diffusion across phase
interface.

In this work, we aim to develop an improved LB model for sim-
ulating the solid-liquid phase change problems in porous media
under LTNE conditions, which can overcome the above-
mentioned difficulties. In the present model, by introducing the
total enthalpy into the equilibrium distribution function for the
PCM temperature, the non-linear latent-heat source term in the
LB equation vanished and thus phase change can be tackled with-
out iteration procedure. In addition, through tuning the free
parameter properly, the relaxation time can be fixed at around
unity to reduce numerical diffusion across phase interface for mod-
eling the PCM temperature field.
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2. Mathematical formulation

With the assumption of local thermal non-equilibrium between
the solid matrix and the PCM, the volume average energy equa-
tions for solid-liquid phase change in porous media can be
described as follows [1,2]:
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where u, T, e, q, cp, La, fl, ke and hV are the velocity, temperature,
porosity, density, specific heat, latent heat of melt, liquid fraction
of the PCM, equivalent thermal conductivity and volumetric heat
transfer coefficient, respectively; the subscripts s, f and fl refer to
the solid matrix, the PCM, and the liquid phase of the PCM. The vol-
umetric heat transfer coefficient hV is the product of interfacial heat
transfer coefficient between PCM and porous media and specific
surface area of porous matrix. Eqs. (1) and (2) can also written in
the form:
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where the total enthalpy of the PCM, Enf, is given as
Enf ¼ ðqcpÞfT f þ qLaf l, and Ens is defined as Ens ¼ ðqcpÞsTs. In addi-
tion, the volume average velocity, u, satisfies the continuity equa-
tion and the Brinkman-Forchheimer equation [1,2], which are
given as
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where p and me are the volume average pressure, respectively. F rep-
resents the total body force due to the presence of porous media
and other external force, and can be expressed as

F ¼ � emfl
K
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where mfl is the kinematic viscosity of the fluid, K is the permeabil-
ity, Fe is the Forchheimer form coefficient, b is thermal expansion
coefficient, Tref denotes the reference temperature, and g is the grav-
ity acceleration. The fluid flow and heat transfer, can be character-
ized by some dimensionless parameters: the Prandtl number Pr, the
viscosity ratio J, the Rayleigh number Ra, the Darcy number Da and
the Stefan number Ste, and the interstitial Nusselt number, which
are defined as follows:
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where DT represents the characteristic temperature difference, L
denotes the characteristic length and dp is the pore diameter.

3. Lattice Boltzmann model

3.1. Lattice Boltzmann equation for the flow field in porous media

The LB equation for the velocity field is written as [4]:
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where fi, is the distribution function for the velocity field with dis-
crete velocity ei at position r and time t; dt is the time step. f eqi in Eq.
(9) is defined as [4]
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where xi and cs are the weight coefficients and the sound speed.
The discrete body force term Fi can be described as [4]
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The macroscopic fluid density can be calculated by q ¼ P
if i.

The fluid velocity u is computed using a temporal velocity V and
is given as [4]
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where the two parameters d0 and d1 are given
d0 ¼ 1=2ð1þ edtmfl=ð2KÞÞ, d1 ¼ edtFe=ð2

ffiffiffiffi
K

p
Þ. In this work, we use

the nine-velocity model in two dimensions (D2Q9 model). The
dimensionless relaxation time is given as s ¼ ve=ðc2s dtÞ þ 0:5.

3.2. Lattice Boltzmann equations for the temperature fields of the PCM
and solid matrix

The SRT-LB equations for the temperature fields of the PCM and
solid matrix are written as:
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where sT,f and sT,s are the dimensionless relaxation times of the
PCM and solid matrix phases, respectively. Moreover, geq

i;f and geq
i;s

are the equilibrium temperature distribution function of the PCM
and that of solid matrix phase and can be expressed respectively as
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where cf and cs are the two free parameters, respectively, which
keep unvaried over the entire space. The two discrete source terms,
Sri,f and Sri,s, can be defined respectively as Sri;f ¼ xihV ðTs � T fÞ, and
Sri;s ¼ xihV ðT f � TsÞ. The discrete source term Sui,f is given as
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